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Abstract

Neuropathic pain is caused by a lesion or disease of the somatosensory system, including 

peripheral fibres (Aβ, Aδ and C fibres) and central neurons, and affects 7–10% of the general 

population. Multiple causes of neuropathic pain have been described and its incidence is likely to 

increase owing to the ageing global population, increased incidence of diabetes mellitus and 

improved survival from cancer after chemotherapy. Indeed, imbalances between excitatory and 

inhibitory somatosensory signalling, alterations in ion channels and variability in the way that pain 

messages are modulated in the central nervous system all have been implicated in neuropathic 

pain. The burden of chronic neuropathic pain seems to be related to the complexity of neuropathic 

symptoms, poor outcomes and difficult treatment decisions. Importantly, quality of life is impaired 

in patients with neuropathic pain owing to increased drug prescriptions and visits to health care 

providers, as well as the morbidity from the pain itself and the inciting disease. Despite challenges, 

progress in the understanding of the pathophysiology of neuropathic pain is spurring the 

development of new diagnostic procedures and personalized interventions, which emphasize the 

need for a multidisciplinary approach to the management of neuropathic pain.

Although distinct definitions of neuropathic pain have been used over the years, its most 

recent (2011) and widely accepted definition is pain caused by a lesion or disease of the 

somatosensory system. The somatosensory system allows for the perception of touch, 

pressure, pain, temperature, position, movement and vibration. The somatosensory nerves 

arise in the skin, muscles, joints and fascia and include thermoreceptors, mechanoreceptors, 

chemoreceptors, pruriceptors and nociceptors that send signals to the spinal cord and 

eventually to the brain for further processing (BOX 1); most sensory processes involve a 

thalamic nucleus receiving a sensory signal that is then directed to the cerebral cortex. 

Lesions or diseases of the somatosensory nervous system can lead to altered and disordered 

transmission of sensory signals into the spinal cord and the brain; common conditions 

associated with neuropathic pain include postherpetic neuralgia, trigeminal neuralgia, 

painful radiculopathy, diabetic neuropathy, HIV infection, leprosy, amputation, peripheral 

nerve injury pain and stroke (in the form of central post-stroke pain) (FIG. 1). Not all 

patients with peripheral neuropathy or central nervous injury develop neuropathic pain; for 

example, a large cohort study of patients with diabetes mellitus indicated that the overall 

prevalence of neuropathic pain symptoms was 21% in patients with clinical neuropathy. 

However, the prevalence of neuropathic pain increased to 60% in those with severe clinical 

neuropathy1. Importantly, neuropathic pain is mechanistically dissimilar to other chronic 

pain conditions such as inflammatory pain that occurs, for example, in rheumatoid arthritis, 
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in which the primary cause is inflammation with altered chemical events at the site of 

inflammation; such pain is diagnosed and treated differently2.

Neuropathic pain is associated with increased drug prescriptions and visits to health care 

providers3,4. Patients typically experience a distinct set of symptoms, such as burning and 

electrical-like sensations, and pain resulting from non-painful stimulations (such as light 

touching); the symptoms persist and have a tendency to become chronic and respond less to 

pain medications. Sleep disturbances, anxiety and depression are frequent and severe in 

patients with neuropathic pain, and quality of life is more impaired in patients with chronic 

neuropathic pain than in those with chronic non-neuropathic pain that does not come from 

damaged or irritated nerves3,5.

Despite the increases of placebo responses6,7 that result in the failure of multiple new drugs 

in clinical trials, recent progress in our understanding of the pathophysiology of neuropathic 

pain provides optimism for the development of new diagnostic procedures and personalized 

interventions. This Primer presents the current descriptions of the presentation, causes, 

diagnosis and treatment of neuropathic pain, with a focus on peripheral neuropathic pain 

given that our knowledge is greater than that of central neuropathic pain.

Epidemiology

The estimation of the incidence and prevalence of neuropathic pain has been difficult 

because of the lack of simple diagnostic criteria for large epidemiological surveys in the 

general population. Thus, the prevalence of neuropathic pain in the chronic pain population 

has mainly been estimated on the basis of studies8 conducted by specialized centres with a 

focus on specific conditions, such as postherpetic neuralgia9, 10, painful diabetic 

polyneuropathy1,11–13, postsurgery neuropathic pain14, multiple sclerosis15, 16, spinal cord 

injury17, stroke18 and cancer19, 20.

The recent development of simple screening tools in the form of questionnaires21 has helped 

conduct several large epidemiological surveys in different countries (the United Kingdom, 

the United States, France and Brazil) and provided valuable new information on the general 

prevalence of neuropathic pain4. In using screening tools, such as the Douleur 

Neuropathique 4 questions (DN4)22 or the Leeds Assessment of Neuropathic Symptoms and 

Signs (LANSS) pain scale23 (BOX 2), the prevalence of chronic pain with neuropathic 

characteristics has been estimated to be in the range of 7–10%8,24.

Chronic neuropathic pain is more frequent in women (8% versus 5.7% in men) and in 

patients >50 years of age (8.9% versus 5.6% in those <49 years of age), and most commonly 

affects the lower back and lower limbs, neck and upper limbs24. Lumbar and cervical painful 

radiculopathies are probably the most frequent cause of chronic neuropathic pain. Consistent 

with these data, a survey of >12,000 patients with chronic pain with both nociceptive and 

neuropathic pain types, referred to pain specialists in Germany, revealed that 40% of all 

patients experience at least some characteristics of neuropathic pain (such as burning 

sensations, numbness and tingling); patients with chronic back pain and radiculopathy were 

particularly affected25.
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Mechanisms/pathophysiology

Research in the pain field has focused on understanding the plastic changes in the nervous 

system after nerve injury, identifying novel therapeutic targets and in facilitating the transfer 

of knowledge from animal models to clinical practice. We describe briefly the multiple 

causes of neuropathic pain and present an overview of animal and human findings that have 

provided insights on the pathophysiology of neuropathic pain.

Causes and distributions

Central neuropathic pain is due to a lesion or disease of the spinal cord and/or brain. 

Cerebrovascular disease affecting the central somatosensory pathways (poststroke pain) and 

neurodegenerative diseases (notably Parkinson disease) are brain disorders that often cause 

central neuropathic pain26. Spinal cord lesions or diseases that cause neuropathic pain 

include spinal cord injury, syringomyelia and demyelinating diseases, such as multiple 

sclerosis, transverse myelitis and neuromyelitis optica27. By contrast, the pathology of the 

peripheral disorders that cause neuropathic pain predominantly involves the small 

unmyelinated C fibres and the myelinated A fibres, namely, the Aβ and Aδ fibres5. 

Peripheral neuropathic pain will probably become more common because of the ageing 

global population, increased incidence of diabetes mellitus and the increasing rates of cancer 

and the consequence of chemotherapy, which affect all sensory fibres (Aβ, Aδ and C fibres). 

Peripheral neuropathic pain disorders can be subdivided into those that have a generalized 

(usually symmetrical) distribution and those that have a focal distribution (FIG. 2). The most 

clinically important painful generalized peripheral neuropathies include those associated 

with diabetes mellitus (BOX 3), pre-diabetes and other metabolic dysfunctions, infectious 

diseases (mainly HIV infection28 and leprosy29), chemotherapy, immune (for example, 

Guillain-Barre syndrome) and inflammatory disorders, inherited neuropathies and 

channelopathies (such as inherited erythromelalgia, a disorder in which blood vessels are 

episodically blocked then become hyperaemic and inflamed).

The topography of the pain in these disorders typically encompasses the distal extremities, 

often called a ‘glove and stocking’ distribution because the feet, calves, hands and forearms 

are most prominently affected. This distribution pattern is characteristic of dying-back, 

length-dependent, distal peripheral neuropathies involving a distal-proximal progressive 

sensory loss, pain and, less frequently, distal weakness. Less frequently, the pain has a 

proximal distribution in which the trunk, thighs and upper arms are particularly affected; this 

pattern occurs when the pathology involves the sensory ganglia. Painful focal peripheral 

disorders are caused by pathological processes that involve one or more peripheral nerves or 

nerve roots. These disorders include postherpetic neuralgia, post-traumatic neuropathy, 

postsurgical neuropathy, cervical and lumbar polyradiculopathies, pain associated with HIV 

infection, leprosy and diabetes mellitus, complex regional pain syndrome type 2 and 

trigeminal neuralgia30.

Rare inherited channelopathies can show characteristic pain distributions and triggering 

factors. For example, inherited erythromelalgia is due to mutations in SCN9A, which 

encodes the voltage-gated sodium channel Nav1.7 (involved in the generation and 

conduction of action potentials), and is characterized by pain and erythema (reddening) in 
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the extremities, which is exacerbated by heat31. Paroxysmal extreme pain disorder is due to 

a distinct set of mutations in SCN9A that result in a proximal distribution of pain and 

erythema affecting the sacrum and mandible32; pain triggers in those with this condition can 

include mechanical stimuli. In approximately 30% of patients with idiopathic small-fibre 

neuropathy, functional mutations of the Nav1.7 sodium channel that result in hyperexcitable 

dorsal root ganglion neurons have been observed33.

Pain signalling changes

Peripheral neuropathy alters the electrical properties of sensory nerves, which then leads to 

imbalances between central excitatory and inhibitory signalling such that inhibitory 

interneurons and descending control systems are impaired. In turn, transmission of sensory 

signals and disinhibition or facilitation mechanisms are altered at the level of the spinal cord 

dorsal horn neurons. Indeed, preclinical studies have revealed several anatomical, molecular 

and electrophysiological changes from the periphery through to the central nervous system 

(CNS) that produce a gain of function, providing insights into neuropathic pain and its 

treatment (BOX 4). At the periphery, spinal cord and brain, a gain of excitation and 

facilitation and a loss of inhibition are apparent. These changes shift the sensory pathways to 

a state of hyperexcitability, and a sequence of changes over time from the periphery to the 

brain might contribute to the neuropathic pain state becoming chronic.

Ectopic activity in primary afferent fibres might have a key role in the pathophysiology of 

neuropathic pain following peripheral nerve injury. Patients with painful diabetic 

polyneuropathy and traumatic peripheral nerve injury showed a complete loss of ipsilateral 

spontaneous and evoked pain when treated with a peripheral nerve block (with lidocaine, 

which blocks voltage-gated sodium channels)34. Similarly, a blockade of the dorsal root 

ganglion by intraforaminal epidural administration of lidocaine resulted in relief of painful 

and non-painful sensations in patients with phantom limb pain35. Microneurography studies 

have also identified a spontaneous activity — primarily in C fibres — that is related to pain, 

suggesting a potential peripheral mechanism for neuropathic pain36, 37.

Overall, the underlying hyperexcitability in neuropathic pain results from changes in ion 

channel function and expression, changes in second-order nociceptive neuronal function and 

changes in inhibitory interneuronal function.

Ion channel alterations

Neuropathy causes alterations in ion channels (sodium, calcium and potassium) within the 

affected nerves, which can include all types of afferent fibres that then affect spinal and 

brain sensory signalling. For example, increased expression and function of sodium channels 

at the spinal cord terminus of the sensory nerves (mirrored by an enhanced expression of the 

α2δ subunit of calcium channels) lead to increased excitability, signal transduction and 

neurotransmitter release. Indeed, the crucial role of sodium channels is shown by loss or 

gain of pain in humans with inherited channelopathies31. At the same time, a loss of 

potassium channels that normally modulate neural activity is also evident. If an afferent fibre 

is disconnected from the periphery due to an injury or a lesion, there will be sensory loss. 

However, the remnants of the fibres at the injury site can generate ectopic activity (for 
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example, neuroma C fibre afferents), and so pain from a ‘numb’ area results38. The 

remaining intact fibres are hyperexcitable, so-called irritable nociceptors39. As a result, the 

patient can experience ongoing pain, numbness and evoked pains. The altered inputs into the 

spinal cord coupled with increased calcium channel function (through higher expression in 

the nerve terminal) result in increased neurotransmitter release and enhanced excitatory 

synaptic transmission in the nociceptive circuit.

Second-order nociceptive neuron alterations

Enhanced excitability of spinal neurons produces increased responses to many sensory 

modalities, enables low-threshold mechanosensitive Aβ and Aδ afferent fibres to activate 

second-order nociceptive neurons (which convey sensory information to the brain) and 

expands their receptive fields so a given stimulus excites more second-order nociceptive 

neurons, generating the so-called central sensitization40,41. In particular, ongoing discharge 

of peripheral afferent fibres with concomitant release of excitatory amino acids and 

neuropeptides leads to postsynaptic changes in second-order nociceptive neurons, such as an 

excess of signalling due to phosphorylation of N-methyl-D-aspartate (NMDA) and α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. These second-

order changes plausibly explain physical allodynia and are reflected by enhanced sensory 

thalamic neuronal activity, as supported by data from animal42 and human studies43. 

Hyperexcitability can also be caused by a loss of γ-aminobutyric acid (GABA)- releasing 

inhibitory interneurons that can also switch to exert consequently excitatory actions at spinal 

levels44. In addition, there are less well-understood functional changes in non-neuronal cells 

within the spinal cord, such as microglia and astrocytes, which contribute to the 

development of hypersensitivity45.

Inhibitory modulation changes

In addition to changes in pain transmission neurons, inhibitory interneurons and descending 

modulatory control systems are dysfunctional in patients with neuropathic pain. Interneuron 

dysfunction contributes to the overall altered balance between descending inhibitions and 

excitations; specifically, neuropathy leads to a shift in excitation that now dominates. 

Consequently, the brain receives altered and abnormal sensory messages. Altered projections 

to the thalamus and cortex and parallel pathways to the limbic regions account for high pain 

ratings and anxiety, depression and sleep problems, which are relayed as painful messages 

that dominate limbic function.

Areas such as the cingulate cortex and amygdala have been implicated in the ongoing pain 

state and comorbidities associated with neuropathic pain46. Projections from these forebrain 

areas modulate descending controls running from the periaqueductal grey (the primary 

control centre for descending pain modulation) to the brainstem and then act on spinal 

signalling. Indeed, numerous studies have shown that the brainstem excitatory pathways are 

more important in the maintenance of the pain state than in its induction.

Noradrenergic inhibitions, mediated through α2-adrenergic receptors in the spinal cord, are 

attenuated in neuropathic pain, and enhanced serotonin signalling through the 5-HT2 and 5-

HT3 serotonin receptors becomes dominant. The noradrenergic system mediates the diffuse 
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noxious inhibitory controls (DNICs), the animal counterpart of the human conditioned pain 

modulation (CPM; FIG. 3), in which one pain inhibits another through descending 

pathways. DNICs (and CPM) are lost or at least partially impaired in those with neuropathy. 

Animals that recruit noradrenergic inhibitions have markedly reduced hypersensitivity after 

neuropathy despite identical levels of nerve damage47, explaining the advantage of using 

medication that manipulates the monoamine system to enhance DNICs in patients by 

blocking descending facilitations.

Pain modulation mechanisms

Some patients with neuropathic pain are moderately affected, whereas others experience 

debilitating pain. Moreover, patients show a large variability in response to distinct 

pharmacological (in terms of type and dose) and non-pharmacological treatments. A key 

factor in this variability might be the way that the pain message is modulated in the CNS. 

The pain signal can be augmented or reduced as it ascends from its entry port (the dorsal 

horn), relayed to the CNS and arrives at the cerebral cortex (the area crucial for 

consciousness). The various pathways and interference can, accordingly, modify the 

assumed correlation between the extent of the peripheral pathology and the extent of the 

pain syndrome. Most patients with neuropathic pain express a pro-nociceptive pain 

modulation profile — that is, pain messages are augmented in the CNS48. Thus, the 

perception of pain can be disinhibited owing to decreased descending endogenous inhibition, 

which is depicted by less-efficient CPM (BOX 1), facilitated through sensitization of 

ascending pain pathways, which is depicted by enhanced temporal summation of painful 

stimulations, or both. Temporal summation is augmented in neuropathic and non-

neuropathic pain, but patients with neuropathic pain present with a higher slope of 

increase48. CPM has been shown to be less efficient in patients with various pain syndromes 

than in healthy controls49.

The prospect of harnessing pain modulation seems promising for a more individualized 

approach to pain management. Indeed, studies have shown that the pain modulation profile 

can predict the development and extent of chronic postoperative pain50–52. If these findings 

are confirmed by larger studies, we can speculate that patients who express a facilitatory 

pro-nociceptive profile could be treated with a drug that reduces the facilitation (such as 

gabapentinoids) and patients who express an inhibitory pro-nociceptive profile could be 

treated with a drug that enhances the inhibitory capacity (for example, serotonin-

noradrenaline reuptake inhibitors)50. Patients who express both less-efficient CPM and 

enhanced temporal summation might need a combination of treatments. Indeed, the level of 

CPM predicts the efficacy of duloxetine (a selective serotonin-noradrenaline reuptake 

inhibitor) in patients; CPM is restored with both duloxetine and tapentadol (a noradrenaline 

reuptake inhibitor). Moreover, the altered pain modulation profile of a patient can be 

reversed towards normality when pain is treated, as exemplified with arthroplasty surgery in 

patients with osteoarthritis; when the diseased joint is replaced, the majority of patients will 

be free of pain and the central and peripheral processes normalize34, 53, 54.

Notably, pain modulation is highly influenced by expectancy-induced analgesia, in which 

changes due to the beliefs and desires of patients and providers55 affect response to 
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treatment for neuropathic pain. In laboratory settings, expectancy-induced analgesia 

influences clinical pain in irritable bowel syndrome56–58, idiopathic and neuropathic pain59. 

For example, Petersen et al.60, 61 tested expectancy-induced analgesia in patients who 

developed neuropathic pain after thoracotomy. Patients received lidocaine in an open (that is, 

patients were told: “The agent you have just been given is known to powerfully reduce pain 

in some patients”) or hidden (“This is a control condition for the active medication”) manner 

in accordance with a previously described protocol62; the results showed a large reduction of 

ongoing pain, maximum wind-up-like pain and an area of hyperalgesia in those in the open 

group, recapitulating previous reports59,60. These findings point to a clinically relevant 

endogenous pain inhibitory mechanism with implications for phenotyping patients with 

neuropathic pain in clinical trial designs and practices. Such effects should be reduced in 

clinical trials and intentionally enhanced in daily clinical practices as a strategy to optimize 

pain management.

Diagnosis, screening and prevention

A system was proposed to determine the level of certainty with which the pain in question is 

neuropathic as opposed, for example, to nociceptive pain5 (FIG. 4a). If the patient’s history 

suggests the presence of a neurological lesion or disease and the pain could be related to 

such (for example, using validated screening tools) and the pain distribution is 

neuroanatomically plausible, the pain is termed ‘possible’ neuropathic pain. ‘Probable’ 

neuropathic pain requires supporting evidence obtained by a clinical examination of sensory 

signs (for example, bedside testing and quantitative sensory testing). ‘Definite’ neuropathic 

pain requires that an objective diagnostic test confirms the lesion or disease of the 

somatosensory nervous system (for example, neurophysiological tests and skin biopsy). A 

minimum finding of probable neuropathic pain should lead to treatment.

On the basis of the assumption that characteristic qualities indicative of neuropathic pain in 

sensory perception are present, several screening tools have been developed to identify 

neuropathic pain conditions or neuropathic components to chronic pain syndromes63 (BOX 

2). These simple to use patient-reported questionnaires, for example, the DN4 or 

painDETECT22,64, assess characteristic neuropathic pain symptoms (such as burning, 

tingling, sensitivity to touch, pain caused by light pressure, electric shock-like pain, pain to 

cold or heat, and numbness) and can distinguish between neuropathic and non-neuropathic 

pain with high specificity and sensitivity when applied in patients with chronic pain. Other 

tools, such as the Neuropathic Pain Symptom Inventory (NPSI)65, have been more 

specifically developed for the quantification of neuropathic symptoms and dimensions and 

have contributed to further phenotype individual patients particularly for clinical trials.

Confirmatory tests for nerve damage

Different psychophysical and objective diagnostic tests are available to investigate 

somatosensory pathway function, including bedside evaluation and assessment of sensory 

signs as well as neurophysiological techniques, skin biopsy and corneal confocal 

microscopy (FIG. 4b). Of these, sensory evaluation, neurophysiological techniques and 

quantitative sensory testing are routinely used.
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Bedside sensory assessment of sensory signs

Neuropathic pain presents as a combination of different symptoms and signs66. Touch, 

pinprick, pressure, cold, heat, vibration, temporal summation and after sensations can be 

examined at the bed side, whereby the patient describes the sensation after a precise and 

reproducible stimulus is applied67. To assess either a loss (negative sensory signs) or a gain 

(positive sensory signs) of somatosensory function, the responses are graded as normal, 

decreased or increased. The stimulus-evoked (positive) pain types are classified as 

hyperalgesic (experiencing increased pain from a stimulus that is normally perceived as less 

painful) or allodynic (experiencing pain from a stimulus that does not normally trigger a 

pain response), and according to the dynamic or static character of the stimulus.

Quantitative sensory testing

Quantitative sensory tests use standardized mechanical and thermal stimuli to test the 

afferent nociceptive and non-nociceptive systems in the periphery and the CNS. Quantitative 

sensory tests assess loss and gain of function of the entire different afferent fibre classes 

(Aβ, Aδ and C fibres), which is a distinct advantage over other methods68. The German 

Research Network on Neuropathic Pain69 proposed a battery of quantitative sensory tests 

that consists of 13 parameters to help identify somatosensory phenotypes of patients with 

neuropathic pain. These thermal and mechanical tests include the determination of detection 

thresholds for cold, warm, paradoxical heat sensations and touch and vibration; 

determination of pain thresholds for cold and heat stimulations, pinprick and blunt pressure; 

and determination of allodynia and pain summation. Recently, normative data from a large 

database of healthy individuals have helped to determine gain or loss of sensory function in 

age-matched and sex-matched patients with neuropathic pain70,71. Accordingly, pathological 

values of positive and negative signs have been determined for most variables (FIG. 5).

Neurophysiological techniques

Laser-evoked potentials (LEPs) are widely considered the most reliable neurophysiological 

tool to assess nociceptive functions67,72. For example, nerve conduction studies, trigeminal 

reflexes and somatosensory-evoked potentials — the Aβ fibre-mediated standard 

neurophysiological techniques — do not provide information on nociceptive pathways. 

However, they are still useful to identify damage along the somatosensory pathways and are 

widely used for assessing peripheral and CNS diseases that cause neuropathic pain73. Laser 

stimulations selectively activate Aδ and C nociceptors in the superficial layers of the skin74.

LEPs related to Aδ fibre activation have been standardized for clinical application. The 

responses to stimulation are recorded from the scalp and consist of waveforms with different 

latencies. In diseases associated with damage to the nociceptive pathway, LEPs can be 

absent, reduced in amplitude or delayed in latency75–77. Among nociceptive-evoked 

potentials, contact heat- evoked potentials are also widely used in assessing neuropathic 

pain78. Concentric electrodes have also been introduced to measure pain-related evoked 

potentials and the small-fibre involvement in neuropathic pain79. Nevertheless, some studies 

suggest that concentric electrodes also activate non-nociceptive Aβ fibres; hence, pain-

related evoked potential recording is not suitable for assessing nociceptive systems78.
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Skin biopsy

Skin biopsy to assess epidermal innervation is regarded as the most sensitive tool for 

diagnosing small-fibre neuropathies80. The technique is useful because the skin has 

widespread unmyelinated C fibre terminals, with relatively few small myelinated Aδ fibres 

that lose their myelin sheath and reach the epidermis as unmyelinated free nerve 

endings81,82. However, the relationship between skin biopsy data and neuropathic pain is 

still unclear. One study in 139 patients with peripheral neuropathy suggested that a partial 

sparing of intraepidermal nerve fibres, as assessed with skin biopsy, is associated with 

provoked pain83.

Corneal confocal microscopy

As a non-invasive in vivo technique, corneal confocal microscopy can be used to quantify 

corneal nerve fibre damage (to small myelinated Aδ and unmyelinated C fibres) in patients 

with peripheral neuropathies84, 85. However, this technique has several limitations, such as 

the high cost and the reduced availability in most clinical centres. Furthermore, whether 

some conditions (such as dry eye syndrome and Sjögren syndrome, eye diseases or previous 

eye surgery) influence the corneal confocal variables is still unclear86. No study has reliably 

investigated the association between corneal confocal microscopy variables and neuropathic 

pain.

Prevention

Given that the available treatments for neuropathic pain have meaningful but modest benefits 

(see Management), interventions that prevent neuropathic pain can have a substantial effect 

on public health. Indeed, increased attention to prevention has the potential to reduce the 

disability experienced by many patients with chronic neuropathic pain. Leading a healthy 

lifestyle and education regarding pain-causing health conditions are important components 

of prevention, especially in those who are at greater risk of developing neuropathic pain87. 

Prevention programmes that combine mutually reinforcing medical and behavioural 

interventions might lead to greater preventive benefits.

The identification of risk factors is essential to prevent neuropathic pain developing in at-risk 

individuals. Primary prevention strategies (in generally healthy but at-risk individuals) 

include the live attenuated88,89 and subunit adjuvanted90,91 herpes zoster vaccines, which 

both reduce the likelihood of developing herpes zoster infections in individuals ≥50 years of 

age88–91, and therefore, reduce the likelihood of postherpetic neuralgia. Secondary 

prevention involves administering preventive interventions to individuals who are 

experiencing an illness, injury or treatment that can cause chronic neuropathic pain. 

Examples of this approach include the perioperative treatment of surgical patients to prevent 

chronic postsurgical pain92 and the use of antiviral or analgesic treatment in patients with 

herpes zoster infection93. Furthermore, proper management of health conditions, such as 

diabetes mellitus, may prevent neuropathic pain before it even presents94.
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Management

The management of neuropathic pain generally focuses on treating symptoms because the 

cause of the pain can be rarely treated; furthermore, the management of aetiological 

conditions, such as diabetes mellitus, is typically insufficient to relieve neuropathic pain. 

Patients with neuropathic pain generally do not respond to analgesics such as 

acetaminophen, NSAIDs or weak opioids such as codeine. The traditional approach to the 

management of a patient with neuropathic pain is to initiate treatment with conservative 

pharmacological and complementary therapies before interventional strategies, such as nerve 

blocks and neuromodulation, are used. However, the limited efficacy of the drugs, the ageing 

population of patients, polypharmacy in elderly patients and opioid-related adverse effects 

have resulted in an increasing use of interventional therapies. Clinical studies are lacking to 

help guide the physician in the optimal sequence of therapy in a given patient.

Medical intervention

Numerous therapeutic recommendations, with different classes of drug, for neuropathic pain 

have been proposed95–99. On the basis of a systematic review and meta-analysis of all drug 

studies reported on since 1966, including unpublished trials100, pregabalin (a GABA 

analogue), gabapentin (a GABA inhibitor), duloxetine (a serotonin-noradrenaline reuptake 

inhibitor) and various tricyclic antidepressants have strong recommendations for use and are 

recommended as first-line treatments for peripheral and central neuropathic pain. High-

concentration capsaicin (the active component of chili peppers) patches, lidocaine patches 

and tramadol (an opioid with serotonin and noradrenaline reuptake inhibition effects) have 

weak evidence in support of their use and are recommended as second-line treatments for 

peripheral neuropathic pain only. Strong opioids and botulinum toxin A (administered by 

specialists) have weak recommendations for use as third-line treatments. However, most of 

these treatments have moderate efficacy based on the number needed to treat (NNT; that is, 

the number of patients necessary to treat to obtain one responder more than the comparison 

treatment, typically placebo) for obtaining 50% of pain relief101 (TABLE 1). Furthermore, 

pharmacological treatments for chronic neuropathic pain are effective in <50% of patients 

and may be associated with adverse effects that limit their clinical utility101.

First-line treatments

Antidepressants and antiepileptics have been the most studied drugs in neuropathic pain. 

Among antidepressants, tricyclic antidepressants, such as amitriptyline, and serotonin-

noradrenaline reuptake inhibitors, such as duloxetine, have confirmed efficacy in various 

neuropathic pain conditions. Their analgesic efficacy seems largely mediated by their action 

on descending modulatory inhibitory controls, but other mechanisms have been proposed 

(including an action on β2 adrenoceptors)102. Among antiepileptics, the efficacy of 

pregabalin and gabapentin, including extended-release formulations, is best established for 

the treatment of peripheral neuropathic pain and, to a lesser extent, spinal cord injury pain. 

However, the number of negative trials has increased over the past 5 years. The analgesic 

effects of these drugs are mainly related to a decrease in central sensitization through 

binding to the α2δ subunit of calcium voltage-gated channels103.
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Combination of pregabalin or gabapentin with a tricyclic antidepressant or opioid at lower 

doses has resulted in beneficial effects as compared to monotherapy in peripheral 

neuropathic pain100,101,104. However, the efficacy and adverse effects of high-dose 

monotherapy were similar to those of moderate-dose combination therapy in patients with 

diabetic neuropathic pain who did not respond to monotherapy at moderate doses105. These 

studies provide a rationale for the use of combinations of drugs, at moderate dosages, in 

patients who are unable to tolerate high-dose monotherapy.

Second-line treatments

Lidocaine is thought to act on ectopic neuronal discharges through its sodium channel-

blocking properties. The efficacy of lidocaine 5% patches has been assessed in focal 

peripheral postherpetic neuralgia, but their therapeutic gain is modest compared with 

placebo106,107. Capsaicin initially activates transient receptor potential cation channel 

subfamily V member 1 (TRPV1) ligand-gated channels on nociceptive fibres, leading to 

TRPV1 desensitization and defunctionalization. The sustained efficacy of a single 

application of a high-concentration capsaicin patch (8%) has been reported in postherpetic 

neuralgia108, as well as diabetic104 and non-diabetic painful neuropathies109. The long-term 

safety of repeated applications seems favourable based on open studies, but there are no 

longterm data on the effects on epidermal nerve fibres in patients with neuropathic pain101. 

Tramadol, an opioid agonist and serotonin-noradrenaline reuptake inhibitor, has also been 

shown to be effective, mainly in peripheral neuropathic pain; its efficacy is less established 

in central neuropathic pain101.

Third-line treatments

Botulinum toxin A is a potent neurotoxin commonly used for the treatment of focal muscle 

hyperactivity and has shown efficacy of repeated administrations over 6 months, with 

enhanced effects of the second injection110. The toxin has a beneficial role in the treatment 

of peripheral neuropathic pain (for example, diabetic neuropathic pain, postherpetic 

neuralgia and trigeminal neuralgia)110–112.

Opioid agonists, such as oxycodone and morphine, are mildly effective101, but there is 

concern about prescription opioid-associated overdose, death, diversion, misuse and 

morbidity113.

There are weak, negative or inconclusive recommendations for the use of all other drug 

treatments for neuropathic pain in general. Antiepileptics other than α2δ ligands (for 

example, topiramate, oxcarbazepine, carbamazepine, valproate, zonisamide, lacosamide and 

levetiracetam) fall into these categories, although some agents are probably effective in 

subgroups of patients. Oromucosal cannabinoids have been found to be variably effective in 

pain associated with multiple sclerosis and in peripheral neuropathic pain with allodynia, but 

several unpublished trials were negative on the primary outcome. Results for selective 

serotonin reuptake inhibitors, NMDA antagonists, mexiletine (a non-selective voltage-gated 

sodium channel blocker) and topical clonidine (an α2-adrenergic agonist and imidazoline 

receptor agonist) have generally been inconsistent or negative except in certain subgroups.
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Emerging treatments

A few drugs targeting novel mechanisms of action are under clinical development for the 

treatment of peripheral neuropathic pain. These include, in particular, subtype selective 

sodium channel-blocking agents, particularly Nav1.7 antagonists114, and EMA401, a novel 

angiotensin type II antagonist that has been found to be effective in a phase II clinical trial in 

postherpetic neuralgia115. Although still in the preclinical phase, studies show promising 

results of stem cell treatment for neuropathic pain116,117.

Interventional therapies

Interventional treatments, such as nerve blocks or surgical procedures that deliver drugs to 

targeted areas, or modulation of specific neural structures, provide alternative treatment 

strategies in selected patients with refractory neuropathic pain118,119 (FIG. 6). Although 

generally safe (see below), spinal cord stimulation and peripheral nerve stimulation have 

been associated with hardware-related, biological complications, such as infections and 

programming-related or treatment-related adverse effects (including painful 

paraesthesias)120,121.

Neural blockade and steroid injections

A perineural injection of steroids provides transient relief (1–3 months) for trauma-related 

and compression-related peripheral neuropathic pain122. Systematic reviews and meta-

analysis of epidural steroid injections for the treatment of cervical and lumbar 

radiculopathies indicate an immediate modest reduction in pain and function of <3 months 

duration, but had no effects on reducing the risk for subsequent surgery119,123,124. Epidural 

local anaesthetic and steroid nerve blocks were given a weak recommendation for the 

treatment of lumbar radiculopathy and acute zoster-associated neuropathic pain119. 

Although sympathetic ganglion blocks have been used to treat pain in some patients with 

complex regional pain syndromes (also known as causalgia and reflex sympathetic 

dystrophy), the evidence for long-term benefit is weak119.

Spinal cord stimulation

Low-intensity electrical stimulation of large myelinated Aβ fibres was introduced based on 

the gate control theory125 as a strategy to modulate the pain signals transmitted by the 

unmyelinated C fibres. The most commonly used and the best-studied neuromodulation 

strategy has been spinal cord stimulation, in which a monophasic square-wave pulse 

(frequency ranging 30–100 Hz) is applied, resulting in paraesthesia in the painful region126. 

Newer stimulation parameters, such as burst (40 Hz burst with five spikes at 500 Hz per 

burst) and high-frequency (10 kHz with sinusoidal waveforms) spinal cord stimulation, 

provide paraesthesia-free stimulation and equivalent or better pain relief compared with the 

monophasic square-wave pulse127,128.

The relative safety and reversibility of spinal cord stimulation, as well as its cost-

effectiveness over the long term have made it an attractive strategy for managing patients 

with refractory chronic neuropathic pain129–131. Systematic reviews, randomized controlled 

trials and several case series provide evidence for the long-term efficacy of spinal cord 

stimulation when combined with medical treatment compared with medical management in 
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various pain neuropathies132–134, and has been shown to offer sustained results at 24 months 

of treatment135,136. Two randomized trials in individuals with painful diabetic neuropathy 

reported greater reduction in pain and improvements in measures of quality of life compared 

with controls137,138. Current European guidelines provide a weak recommendation for 

spinal cord stimulation (combined with medical treatment) in, for example, diabetic 

neuropathic pain118,119,139. The success of spinal cord stimulation for neuropathic pain may 

depend on the appropriate selection of patients based on psychological traits, sensory 

phenotype, enhanced central sensitization and reduced CPM140,141.

Dorsal root ganglion, peripheral nerve and peripheral nerve field stimulation

Neurostimulation of afferent fibres outside the spinal cord (for example, the dorsal root 

ganglion, which contains the cell bodies of sensory neurons, and peripheral nerves) and 

subcutaneous peripheral nerve field stimulation have been reported to provide pain relief in 

various chronic neuropathic pain states, including occipital neuralgia and postherpetic 

neuralgia142,143. A multicentre prospective cohort study in patients with chronic neuropathic 

pain reported that dorsal root ganglion stimulation provided 56% pain reduction with a 60% 

responder rate (>50% reduction in pain)144. These preliminary observations are being 

examined with controlled trials.

Epidural and transcranial cortical neurostimulation

Epidural motor cortex stimulation (ECMS), repetitive transcranial magnetic stimulation 

(rTMS) and transcranial direct current stimulation (tDCS) of the pre-central motor cortex at 

levels below the motor threshold have been proposed as treatment options for patients with 

refractory chronic neuropathic pain145,147. Cortical neurostimulation may reduce pain-

related thalamic hyperactivity or activate descending inhibitory pathways. Meta-analysis 

reports suggest that 60–65% of patients respond (>40% pain reduction) to EMCS147. ECMS 

is a neurosurgical procedure that requires precise intra-operative placement of the 

stimulating electrode over the motor cortex region corresponding to the painful body part for 

optimal outcome.

rTMS and tDCS are non-invasive therapies that involve neurostimulation of brain areas of 

interest via magnetic coils or electrodes on the scalp. Repetitive sessions (5–10 sessions over 

1–2 weeks) with high-frequency rTMS (5–20 Hz) have shown benefits in a mixture of 

central, peripheral and facial neuropathic pain states, with effects lasting >2 weeks after the 

stimulation. tDCS has been reported to be beneficial in reducing several peripheral 

neuropathic conditions148. Current European guidelines include a weak recommendation for 

the use of EMCS and rTMS in refractory chronic neuropathic pain and tDCS for peripheral 

neuropathic pain133. Contraindications of rTMS include a history of epilepsy and the 

presence of aneurysm clips, deep brain electrodes, cardiac pacemakers and cochlear 

implants.

Deep brain stimulation

The use of long-term intracranial stimulation for neuropathic pain remains controversial. 

Multiple sites for deep brain stimulation, including the internal capsule, various nuclei in the 

sensory thalamus, periaqueductal and periventricular grey, motor cortex, septum, nucleus 
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accumbens, posterior hypothalamus and anterior cingulate cortex, have been examined as 

potential brain targets for pain control149. The UK National Institute for Health and Care 

Excellence (NICE) guidelines recognize that the procedure can be efficacious in some 

patients who are refractory to other forms of pain control, but current evidence on the safety 

of deep brain stimulation shows significant potential risks, such as intra-operative seizure, 

lead fractures and wound infections98. Contrary to the NICE guidelines, the current 

European guidelines give inconclusive recommendations139.

Intrathecal therapies

Intrathecal therapies have been developed to deliver drugs to targeted nerves through an 

implanted and refillable pump in patients with severe and chronic pain that is refractory to 

conservative treatments, including psychological, physical, pharmacological and 

neuromodulation therapies150,151. The report from the 2012 Polyanalgesic Consensus 

Conference highlighted that this therapy is associated with risks of serious morbidity and 

mortality and made recommendations to reduce the incidence of these serious adverse 

effects152. The only US FDA-approved drugs for use with such devices are morphine and 

ziconotide (an N-type calcium channel antagonist)153. The most frequently reported adverse 

reactions associated with intrathecal ziconotide are dizziness, nausea, confusion, memory 

impairment, nystagmus (uncontrolled movement of the eyes) and an increase in the levels of 

serum creatine kinase. Ziconotide is contraindicated in patients with a history of psychosis, 

and patients should be monitored for evidence of cognitive impairment, hallucinations or 

changes in mood and consciousness. No high-quality randomized trials have been conducted 

to assess the efficacy of ziconotide and morphine; hence, the recommendations are a 

consensus of experts based on clinical experience or case series.

Physical therapies

Physical therapy, exercise and movement representation techniques (that is, treatments such 

as mirror therapy and motor imagery that use the observation and/or imagination of normal 

pain-free movements) have been suggested to be beneficial in neuropathic pain 

management154,155. For example, mirror therapy and motor imagery are effective in the 

treatment of pain and disability associated with complex regional pain syndrome type I and 

type II156. The quality of evidence supporting these interventions for neuropathic pain is 

weak and needs further investigation154,157.

Psychological therapies

People with chronic pain are not passive; they actively attempt to change the causes of pain 

and change their own behaviour in response to pain. However, for many patients, such 

change without therapeutic help is unachievable, and repeated misdirected attempts to solve 

the problem of pain drive them further into a cycle of pain, depression and disability158. At 

present, there is no evidence for identifying who is at risk of untreatable, difficult to manage 

neuropathic pain and who might benefit from psychological intervention, although research 

is underway on the former159.

Psychological interventions are designed to promote the management of pain and to reduce 

its adverse consequences. Treatments are often provided after pharmacological or physical 
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interventions have failed, although they could be introduced earlier and in concert with non-

psychological interventions. Cognitive-behavioural therapy (CBT) has received the most 

research attention; however, CBT is not a single treatment and can be usefully thought of as 

a family of techniques that are woven together by a clinical narrative of ‘individual change’ 

delivered by therapists who actively manage treatment. Such treatments address mood 

(typically anxiety and depression), function (including disability) and social engagement, as 

well as indirectly targeting analgesia. Secondary outcomes are sometimes reported because 

they are deemed important to treatment delivery (for example, therapeutic alliance and self-

efficacy) or because they are valued by one or more stakeholder (for example, return to work 

and analgesic use).

A Cochrane systematic review of psychological interventions for chronic pain analysed data 

from 35 trials, which showed small-to-moderate effects of CBT over comparisons such as 

education, relaxation and treatment as usual160. In a companion review of 15 trials 

delivering treatment via the Internet, a similar broadly positive conclusion emerged, 

although the confidence in the estimates of effects was low161. Psychological treatments 

other than behavioural therapy and CBT were considered in this review, but none was of 

sufficient quality to include. Another Cochrane review of trials specifically undertaken in 

patients with neuropathic pain found no evidence for or against the efficacy and safety of 

psychological interventions for chronic neuropathic pain162, which is not surprising given 

the similar findings for non-psychological interventions163. An urgent need for studies of 

treatments that are designed specifically for patients with neuropathic pain exists, in 

particular, those with painful diabetic neuropathy, which is a growing problem164. 

Specifically, studies of CBT are needed with content that is specifically designed to meet the 

psychosocial needs of patients with neuropathy, in particular, with regard to the multiple 

sensory challenge, comorbidity and polypharmacy165. A recognition that neuropathic pain 

increases with age will also mean that an understanding of later-life accommodation to 

illness will be important166. In addition, a methodological focus on individual experience 

and trajectories of change is needed, either through single case experiments or through 

ecological momentary assessment167. Furthermore, communication technology, in 

particular, the use of mobile health innovation, is likely to play an important part in future 

solutions. However, how to manage effective therapeutic relationships at a distance, and how 

technology can augment and improve face-to-face CBT remain to be clarified168. Technical 

psychological variables — such as catastrophic thinking, acceptance or readiness to change 

— should be relegated to process variables. Conversely, a pragmatic focus on patient-

reported outcomes will be essential to reduce pain, improve mood and reduce disability, 

which will ultimately improve quality of life.

Quality of life

Neuropathic pain can substantially impair quality of life as it often associates with other 

problems, such as loss of function, anxiety, depression, disturbed sleep and impaired 

cognition. Measures of health-related quality of life (HRQOL) that capture broad 

dimensions of health including physical, mental, emotional and social functioning are 

increasingly used when assessing the efficacy of different interventions to manage chronic 
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neuropathic and non-neuropathic pain. It is mainly useful when calculating quality-adjusted 

life years, which are necessary for cost-utility analyses.

The most commonly used HRQOL instruments are general, whereas others have been 

designed specifically for those with neuropathic pain. Meyer-Rosberg and colleagues 

validated both the 36-Item Short Form Health Survey (SF-36) and the Nottingham Health 

Profile (NHP) in the assessment of HRQOL in neuropathic pain related to peripheral nerve 

or nerve root lesions in patients attending multidisciplinary pain clinics169. The scores of all 

eight dimensions (vitality, physical functioning, bodily pain, general health perceptions, 

physical role functioning, emotional role functioning, social role functioning and mental 

health) in the SF-36 were significantly lower in those with neuropathic pain than in the 

general population, which is in line with another study170.

The onset of neuropathy in patients with diabetes mellitus has been shown to significantly 

decrease all aspects of quality of life171. If diabetic polyneuropathy is accompanied by pain, 

both physical and mental components of quality of life are further affected172. A recent 

study also showed that both EuroQol five dimensions (EQ-5D) and Short Form-6 dimension 

(SF-6D) questionnaires can discriminate between chronic pain with or without neuropathic 

pain173. Furthermore, the role of psychological factors in impairing quality of life in 

neuropathic pain has been analysed174, showing, for example, that pain catastrophizing was 

associated with decreased HRQOL174. The SF-36 and the EQ-5D have been the most 

commonly used instruments in clinical trials to assess the efficacy of treatments, such as 

gabapentin in postherpetic neuralgia175, diabetic polyneuropathy176 and neuropathic pain 

due to peripheral nerve injury170; the efficacy of duloxetine in diabetic peripheral 

neuropathy177; and the efficacy of spinal cord stimulation in diabetic polyneuropathy178.

Outlook

Although nervous system mechanisms underlying chronic neuropathic pain have been 

uncovered through animal and human research, the development of novel interventions with 

improved efficacy and tolerability has been slow. New therapeutic approaches as well as 

improved clinical trial designs, specifically addressing genotypic and phenotypic profiles, 

have great promise to build on recent advances in basic and translational research.

Clinical trial design

The explanations for the slow progress in identifying treatments with improved efficacy that 

are receiving the greatest attention are inadequate clinical trial assay sensitivity and the need 

to target treatment to patients who are most likely to respond179,180. Assay sensitivity refers 

to the ability of a clinical trial to distinguish an efficacious treatment from placebo (or 

another comparator). The possibility that recent neuropathic pain clinical trials suffer from 

limited assay sensitivity is consistent with the observation that a considerable number of 

recent trials in patients with neuropathic pain investigating medications with well-

established efficacy have returned negative results7,181. For example, a recent analysis of 

neuropathic pain trials showed that assay sensitivity was compromised by including patients 

with highly variable baseline pain ratings182, which suggests that trials might have greater 

assay sensitivity if highly variable baseline pain ratings were an exclusion criterion115.
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The outcomes of clinical trials in neuropathic pain have generally shown modest efficacy, 

with the NNTs for 50% pain relief ranging from six to eight for positive studies in the latest 

meta-analysis101. Several reasons could account for these results179,181, including high 

placebo responses, variability in the diagnostic criteria used for neuropathic pain in clinical 

trials and limited assay sensitivity. Thus, it has been proposed that an alternative therapeutic 

approach to neuropathic pain should incorporate stratification of patients according to 

clinical phenotypes (signs and symptoms)66,77,183,184, whereas most trials have simply 

classified patients according to aetiology.

Phenotyping

Several clinical trials provide support for the relevance of phenotypic subgrouping of 

patients, which has the potential to lead to a more personalized pain therapy in the 

future107,110,185,186. In particular, two phenotypes — the presence of mechanical allodynia 

and preserved nociceptive function — are often combined and seem to predict the response 

to systemic and topical sodium channel blockers, botulinum toxin A and clonidine gel in 

recent clinical trials107,110,185. Indeed, any personalized pain treatments will rely on the 

ability to select patients who are likely to respond187.

The strongest evidence showing that profiles of signs and symptoms can identify treatment 

responders stems from a trial in which patients who were defined as having an irritable 

nociceptor phenotype experienced a greater decrease in pain with oxcarbazepine versus 

placebo than those without this phenotype186. This is the only trial in which a pre-specified 

primary analysis demonstrated a difference in treatment versus placebo response in patient 

subgroups identified by phenotyping. These results are very promising, but require 

replication as well as use of phenotyping measures that would be suitable for larger 

confirmatory trials and use in clinical practice188. Phenotyping could also be used to test 

whether certain patients have a more robust response to non-pharmacological treatments, for 

example, invasive, psychological and complementary interventions188, as well as to identify 

which patients are most likely to respond to combinations of treatments. Indeed, given the 

importance of expectations and psychological and social factors — including adaptive 

coping and catastrophizing — in the development and maintenance of chronic neuropathic 

pain, it would not be surprising if phenotyping has a great part to play in demonstrating the 

efficacy of psychological interventions as it does for medications.

To advance the design, execution, analysis and interpretation of clinical trials of pain 

treatments, several public-private partnerships have undertaken systematic efforts to increase 

assay sensitivity and provide validated approaches for phenotyping patients and identifying 

those who are most likely to respond to treatment. These efforts — which include 

ACTTION (www.acttion.org), EuroPain (www.imieuropain.org) and the German Research 

Network on Neuropathic Pain (www.neuro.med.tu-muenchen.de/dfns/) — are providing an 

evidence base for the design of future neuropathic pain clinical trials and for the 

development of mechanism-based approaches to personalized neuropathic pain treatment.
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Personalized pain medicine

Personalized medical care refers to the principle that patients can be stratified such that each 

patient receives the most effective and tolerable treatment for their individual needs. Patients 

can be stratified on several levels: clinical phenotype, detailed sensory profiling, genetics 

and potentially (in the future) using cellular models to facilitate treatment choice. Close 

consultation with the patient is required and this involves complex discussions around the 

uncertainties of genetic risk and the balance between efficacy and tolerability of potential 

treatments. Human genetics studies have demonstrated that Nav1.7 is a crucial pain 

target189, and therapeutics aimed at targeting Nav1.7 provide an example of a situation in 

which testing for specific genetic mutations can inform patient care. Loss-of-function 

mutations lead to congenital insensitivity to pain and gain-of-function mutations cause rare 

inherited pain disorders, including inherited erythromelalgia31, paroxysmal extreme pain 

disorder32 and idiopathic small-fibre neuropathy (which involves pain and small-fibre 

degeneration in the extremities)33.

Genetic information can, therefore, inform diagnostics; however, the interpretation of 

genetic results is complex and should be accompanied by functional analysis of mutant ion 

channels wherever possible190. For instance, in the context of small-fibre neuropathy, 

mutations might not be fully penetrant. Finding a mutation in SCN9A may have immediate 

implications for treatment in choosing a drug with activity against voltage-gated sodium 

channels (not normally first-line agents in the treatment of neuropathic pain), such as 

mexiletine, which is not recommended in the treatment of neuropathic pain but is used in 

inherited erythromelalgia, in which mexiletine has proven efficacy in normalizing abnormal 

channel properties in vitro191 and clinical efficacy in individual cases. A further step has 

been taken in using structural modelling of Nav1.7 to predict what treatment a specific 

mutation will respond to192; the modelling results were used to predict the efficacy of 

carbamazepine (a voltage-gated sodium channel blocker) in inherited erythromelalgia 

associated with the SCN9A S241T mutation193. Furthermore, the generation of nociceptors 

in vitro using patient-derived induced pluripotent stem cells is now possible. In rare 

Mendelian pain disorders (such as inherited erythromelalgia), these nociceptors have been 

shown to be hyperexcitable194. Treatments targeting Nav1.7 can be screened in such cellular 

models and related to clinical efficacy as proof of concept before their use in patients (these 

nociceptors have been shown to be hyperexcitable in inherited erythromelalgia194).

Genetic stratification is more challenging in common acquired neuropathic pain states, such 

as painful diabetic neuropathy, because such conditions are polygenic and subject to 

considerable environmental interaction. Thus, the relevance of an individual target such as 

Nav1.7 in these conditions is less clear. Despite these limitations, the prospect of 

personalized medicine is a step forward towards promising pain management strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Key terms

Action potential

An electrical event in which the membrane potential of a cell in the nervous system 

rapidly rises and falls to transmit electrical signals from cell to cell.

Allodynia

Pain caused by a normally non-painful stimulus.

Aβ fibres

Sensory nerve fibres with a thick myelin sheath, which insulates the axon of the cell and 

normally promotes the conduction of touch, pressure, proprioception and vibration 

signals (35–90 metres per second).

Aδ fibres

Sensory nerve fibres with a myelin sheath, which insulates the axon of the cell and 

promotes the conduction of cold, pressure and pain signals (5–30 metres per second), that 

produce the acute and sharp experience of pain.

C fibres

Unmyelinated pain nerve fibres that respond to warmth and a range of painful stimuli by 

producing a long-lasting burning sensation due to a slow conduction speed (0.5–2 metres 

per second).

Chemoreceptors

Receptors that transduce chemical signals.

Complex regional pain syndromes

Also known as causalgia and reflex sympathetic dystrophy, complex regional pain 

syndromes are conditions that are characterized by the presence of chronic, intense pain 

(often in one arm, leg, hand or foot) that worsens over time and spreads in the affected 

area. These conditions are typically accompanied by a colour or temperature change of 

the skin where the pain is felt.

Conditioned pain modulation

A reduction of a painful test stimulus under the influence of a conditioning stimulus.

Dynamic mechanical allodynia

A type of mechanical allodynia that occurs when pain is elicited by lightly stroking the 

skin.

Expectancy-induced analgesia

A reduction of pain experience due to anticipation, desire and belief of hypoalgesia or 

analgesia.

Colloca et al. Page 31

Nat Rev Dis Primers. Author manuscript; available in PMC 2017 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hyperalgesia

A heightened experience of pain caused by a noxious stimulus.

Hypoalgesia

A decreased perception of pain caused by a noxious stimulus.

Mechanoreceptors

A sensory receptor that transduces mechanical stimulations.

Nociceptors

A peripheral nervous system receptor that is responsible for transducing and encoding 

painful stimuli.

Paradoxical heat sensation

An experienced sensation of heat provoked by a cold stimulus.

Provoked pain

Pain provoked by applying a stimulus.

Pruriceptors

Sensory receptors that transduce itchy sensations.

Second-order nociceptive neurons

Nociceptive neurons in the central nervous system that are activated by the Aβ, Aδ and C 

afferent fibres and convey sensory information from the spinal cord to other spinal 

circuits and the brain.

Static pain

Another kind of mechanical hyperalgesia in those with neuropathic pain when pain is 

provoked after gentle pressure is applied on the symptomatic area.

Temporal summation

The phenomenon in which progressive increases in pain intensity are experienced during 

the repetition of identical nociceptive stimuli.

Thermoreceptors

Sensory receptors that respond to changes in temperature.
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Box 2

Validated screening tools for neuropathic pain

Symptom and clinical examination items can be assessed using distinct validated 

screening tools. The most common tools are listed below.

Leeds Assessment of Neuropathic Symptoms and Signs*

• Four symptom items (pricking, tingling, pins and needles; electric shocks; hot 

or burning sensations; and pain evoked by light touching)

• One item related to skin appearance (mottled or red)

• Two clinical examination items (touch-evoked allodynia and altered pinprick 

sensation)

Douleur Neuropathique 4 questions‡

• Seven symptom items (burning, painful cold, electric shocks, tingling, pins 

and needles, numbness and itching)

• Three clinical examination items (touch hypoaesthesia (reduced sense), 

pinprick hypoaesthesia and brush-evoked allodynia)

Neuropathic Pain Questionnaire§

• Seven sensory descriptors (burning pain, shooting pain, numbness, electrical-

like sensations, tingling pain, squeezing pain and freezing pain)

• Three items related to provoking factors (overly sensitive to touch, touch-

evoked pain and increased pain due to weather change)

• Two items describing affect (unpleasantness and overwhelming)

painDETECT||

• Seven weighted symptom items (burning, tingling or prickling, touch-evoked 

pain, electric shocks, temperature-evoked pain, numbness and pressure-

evoked pain)

• Two items related to spatial (radiating pain) and temporal characteristics

ID Pain¶

• Five symptom items (pins and needles, hot or burning, numbness, electrical 

shocks and touch-evoked pain)

• One item related to location (joints)

Neuropathic Pain Symptom Inventory#

• Ten descriptors (burning, pressure, squeezing, electrical shocks, stubbing, 

pain evoked by brushing, pain evoked by pressure, pain evoked by cold 

stimuli, pins and needles, and tingling)
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• Two temporal items (the temporal sequence of spontaneous ongoing pain and 

paroxysmal pain)

• Five clinically relevant dimensions (evoked pain, paroxysmal pain, abnormal 

sensations, superficial and deep components of spontaneous ongoing pain)

*See REF 23. ‡See REF. 22. §See REF 195. ||See REF 64. ¶See REF 196. #See REF 65.
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Box 3

Neuropathic pain and diabetes mellitus

Painful chronic neuropathy in patients with diabetes mellitus ranges from 10% to 26%38. 

Although risk factors and potential mechanisms underlying neuropathy have been studied 

extensively, the aetiology of the painful diabetic neuropathy is not completely known. 

However, findings from epidemiological studies have suggested that patients with 

diabetes mellitus who develop neuropathy, compared with those patients who do not, 

seem to have different cardiovascular function, glycaemic control, weight, rates of 

obesity, waist circumference, risk of peripheral arterial disease and triglyceride plasmid 

levels. Indeed, patients with diabetes mellitus have alterations in the peripheral and 

central pain pathways; other mechanistic contributors include blood glucose instability, 

increased peripheral nerve epineural blood flow, microcirculation of the skin of the foot, 

altered intraepidermal nerve fibre density, increased thalamic vascularity and autonomic 

dysfunction. Furthermore, methylglyoxal (a by-product of glycolysis) plasma levels are 

increased in patients with diabetes mellitus owing to excessive glycolysis and decreased 

degradation by the glyoxalase system197. This metabolite activates peripheral nerves by 

changing the function of Nav1.7 and Nav1.8 voltage-gated sodium channnels197 and 

might, therefore, have a role in painful neuropathy. Studies in animals have shown that 

methylglyoxal slows nerve conduction, heightens calcitonin gene-related peptide release 

from nerves and leads to thermal and mechanical hyperalgesia197. Notably, 

methylglyoxal-dependent modifications of sodium channels induce diabetes-associated 

hyperalgesia that is not simply due to changes in peripheral fibres197.
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Box 4

Challenges in translating animal studies to therapeutic pharmacological 
targets in humans

Translating knowledge from preclinical observations in animal models to new targeted 

drug therapies in the clinic has been challenging. The differences between animal 

behavioural tests and human neuropathic pain features, lack of long-term efficacy data in 

animal models and the homogeneity of animal genetic strains might contribute to these 

challenges. Nonetheless, a substantial part of our knowledge of neuropathic pain 

mechanisms is derived from animal studies. Animal models of neuropathic pain use 

surgical lesions of the spinal cord, cranial and peripheral sensory nerves, such as ligation, 

constriction or transection of parts or branches of nerves198. These animal models exhibit 

hypersensitivity to external stimuli, commonly to mechanical stimuli as assessed with 

von Frey hairs (for measuring the tactile sensitivity), but may also include 

hypersensitivity to thermal stimuli (especially cold). Higher-level outcome measurements 

that are suggestive of reward from pain relief and reflective of the spontaneous pain 

experienced by patients have recently been introduced in the array of animal models of 

neuropathic pain199. Models of diabetic neuropathy have also been affected by the ill 

health of the animals, but this aspect is starting to be addressed in the most recent 

studies38.

Notably, basic research findings have often led to the development of specific therapeutic 

targets. For example, the altered function of the sodium channels within the damaged 

peripheral nerves provides insights into the use of topical voltage-gated sodium channel 

blockade (such as lidocaine107 and carbamazepine186) for neuropathic pain. Moreover, 

the assumption of abnormal sodium channel activity has led to the use of oxcarbazepine, 

which has been shown to be more effective in patients with the ‘irritable nociceptor’ 

phenotype186. Drugs such as gabapentin and pregabalin200 (see Management) target the 

α2δ subunit of the voltage-dependent calcium channels that are overexpressed in patients 

with neuropathic pain. When given intrathecally, gabapentin inhibited hypersensitivity in 

animal models201 but has failed to show positive results in humans202.
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Figure 1. The peripheral and central changes induced by nerve injury or peripheral neuropathy
Preclinical animal studies have shown that damage to all sensory peripheral fibres (namely, 

Aβ, Aδ and C fibres; BOX 1) alters transduction and transmission due to altered ion channel 

function. These alterations affect spinal cord activity, leading to an excess of excitation 

coupled with a loss of inhibition. In the ascending afferent pathways, the sensory 

components of pain are via the spinothalamic pathway to the ventrobasal medial and lateral 

areas (1), which then project to the somatosensory cortex allowing for the location and 

intensity of pain to be perceived (2). The spinal cord also has spinoreticular projections and 

the dorsal column pathway to the cuneate nucleus and nucleus gracilis (3). Other limbic 

projections relay in the parabrachial nucleus (4) before contacting the hypothalamus and 

amygdala, where central autonomic function, fear and «anxiety are altered (5). Descending 

efferent pathways from the amygdala and hypothalamus (6) drive the periaqueductal grey, 

the locus coeruleus, A5 and A7 nuclei and the rostroventral medial medulla. These 

brainstem areas then project to the spinal cord through descending noradrenaline (inhibition 

via α2 adrenoceptors), and, in neuropathy, there is a loss of this control and increased 

serotonin descending excitation via 5-HT3 receptors (7). The changes induced by peripheral 

neuropathy on peripheral and central functions are shown. Adapted with permission from 

REF. 38, Mechanisms and management of diabetic painful distal symmetrical 

polyneuropathy, American Diabetes Association, 2013. Copyright and all rights reserved. 

Material from this publication has been used with the permission of American Diabetes 

Association.
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Figure 2. Neuroanatomical distribution of pain symptoms and sensory signs in neuropathic pain 
conditions
Distribution of pain and sensory signs in common peripheral and central neuropathic pain 

conditions. *Can sometimes be associated with central neuropathic pain. ‡Can sometimes be 

associated with peripheral neuropathic pain.
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Figure 3. Schematic representation of the conditioned pain modulation
The conditioned pain modulation (CPM) paradigm is used in the research setting to assess 

the change of perceived pain by a test stimulus under the influence of a conditioning 

stimulus203. A test stimulus can be a thermal contact stimulation (1), mechanical pressure 

(2), an electrical stimulus (3) — for each, either pain threshold or suprathreshold magnitude 

estimation can be used — or nociceptive withdrawal reflex (4). A typical conditioning 

stimulus consists of thermal contact stimulation (5), or immersion in a cold (6) or hot (7) 

water bath. Other modalities can be used as well. During a CPM assessment, a test stimulus 

is given first, then the conditioning stimulus is given, and the test is repeated during or 

immediately after the conditioning.

Colloca et al. Page 39

Nat Rev Dis Primers. Author manuscript; available in PMC 2017 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Diagnosing neuropathic pain, a
The flowchart summarizes the clinical steps in diagnosing neuropathic pain, which involves 

taking the patient history, examining the patient and following up with confirmatory tests. If 

the answer is ‘no’ after examination, the patient might still have probable neuropathic pain. 

In such cases, confirmation tests could be performed if sensory abnormalities are not found; 

for example, in some hereditary conditions, sensory abnormalities are not found at the 

moment of examination. *History of a neurological lesion or disease relevant to the 

occurrence of neuropathic pain. ‡The patient's pain distribution reflects the suspected lesion 

or disease. §Signs of sensory loss are generally required. However, touch-evoked or thermal 

allodynia might be the only finding at bedside examination. ||‘Definite’ neuropathic pain 

refers to a pain that is compatible with the features of neuropathic pain and confirmatory 

tests are consistent with the location and nature of the lesion or disease, although this may 

not imply any causality. b | The confirmatory tests for neuropathic pain include quantitative 

sensory testing (in which the patient provides a subjective report on a precise and 

reproducible stimulus), blink reflex testing (whereby the trigeminal afferent system is 

investigated by recording the R1 and R2 reflex responses recorded from the orbicularis oculi 

muscle) and nerve conduction study (which assesses non-nociceptive fibre function of the 

peripheral nerves). Somatosensory-evoked potentials (N9 is generated by the brachial plexus 

and N20 by the somatosensory cortex) and laser-evoked potentials (LEPs), both recorded 

from the scalp, are neurophysiological tools that investigate large and small afferent fibre 

function. The N1 LEP wave is a lateralized component and generated by the secondary 

somatosensory cortex, and the negative-positive complex of LEP (N2-P2) is a vertex 

recorded potential, which is generated by the insular cortex bilaterally and the cingulate 
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cortex204. A skin biopsy enables the quantification of the intraepidermal nerve fibres, which 

provides a measure of small-fibre loss77. Finally, corneal confocal microscopy assesses 

corneal innervation, which consists of small nerve fibres. In most patients with neuropathic 

pain, standard neurophysiological testing, such as blink reflex, nerve conduction study and 

somatosensory-evoked potentials, is sufficient for showing the damage of the somatosensory 

system. However, in patients with selective damage of the nociceptive system, a nociceptive-

specific tool, such as LEPs, skin biopsy or corneal confocal microscopy, is needed. 

Typically, tests are performed in the sequence of increasing invasiveness; that is, quantitative 

sensory testing, blink reflex, nerve conduction study, somatosensory-evoked potentials, 

LEPs, skin biopsy and corneal confocal microscopy. SNAP, sensory nerve action potential. 

Adapted with permission from REF 77, Macmillan Publishers Limited. The corneal 

innervation image in part b (left panel) is reproduced with permission from REF 86, 

Elsevier.
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Figure 5. Subgrouping patients with peripheral neuropathic pain based on sensory signs
On the basis of two well-established testing (n = 902) (part a) and control (n=233) (part b) 

data sets69, three categories of patient phenotypes for neuropathic pain have been proposed: 

sensory loss, thermal hyperalgesia and mechanical hyperalgesia. Positive scores indicate 

positive sensory signs (hyperalgesia), and negative scores indicate negative sensory signs 

(hypoaesthesia or hypoalgesia). Values observed in those with neuropathic pain are 

significantly different from those of healthy participants when the 95% CI does not cross the 

zero line, which defines the average of data from normal subjects. Insets (right) show the 

numerical rating scale (NRS; 0–10) values for dynamic mechanical allodynia (DMA) on a 

logarithmic scale and the frequency of paradoxical heat sensation (PHS) on a scale of 0–3. 

These findings indicate that patients with neuropathic pain have different expression patterns 

of sensory signs. These subgroup results suggest that different mechanisms of pain 

generation are involved in the pain condition. Furthermore, the first clinical trial to show 

phenotype stratification based on these sensory profiles has predictive power for treatment 

response186. Error bars are the graphical representation of the variability of the data present 

in the database. CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain 

threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity; MPT, 

mechanical pain threshold; PPT, pressure pain threshold; QST, quantitative sensory test; 

TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection 

threshold; WUR, wind-up ratio. Reproduced with permission from REF 70, Baron, R. et al., 
Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory 

profiles, Pain, 158, 2, 261–272, http://journals.lww.com/pain/Fulltext/2017/02000/

Peripheral_neuropathic_pain___a_mechanism_related.10.aspx
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Figure 6. Example interventional treatments for neuropathic pain. a
Spinal cord stimulation traditionally applies a monophasic square-wave pulse (at a frequency 

in the 30–100 Hz range) that results in paraesthesia in the painful region. b | Cortical 

stimulation involves the stimulation of the pre-central motor cortex below the motor 

threshold using either invasive epidural or transcranial non-invasive techniques (such as 

repetitive transcranial magnetic stimulation (TMS) and transcranial direct current 

stimulation). c | Deep brain stimulation uses high-frequency chronic intracranial stimulation 

of the internal capsule, various nuclei in the sensory thalamus, periaqueductal and 

periventricular grey, motor cortex, septum, nucleus accumbens, posterior hypothalamus and 

anterior cingulate cortex as potential brain targets for pain control. d | Intrathecal treatments 

provide a targeted drug delivery option in patients with severe and otherwise refractory 

chronic pain. The pumps can be refilled through an opening at the skin surface.
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Table 1

Available pharmacotherapy for neuropathic pain

Drug Mechanisms of action NNT* (range) Adverse effects Precautions and contraindications

Tricyclic antidepressants

Nortriptyline, 
desipramine, 
amitriptyline, 
clomipramine and 
imipramine

Monoamine reuptake 
inhibition, sodium channel 
blockade and anticholinergic 
effects

3.6 (3–4.4) Somnolence, 
anticholinergic 
effects and weight 
gain

• Cardiac disease, glaucoma, prostatic 
adenoma and seizure
• High doses should be avoided in 
adults >65 years of age and in those 
with amyloidosis

Serotonin-noradrenaline reuptake inhibitors

Duloxetine Serotonin and noradrenaline 
reuptake inhibition

6.4 (5.2–8.2) Nausea, 
abdominal pain 
and constipation

• Hepatic disorder and hypertension
• Use of tramadol

Venlafaxine Serotonin and noradrenaline 
reuptake inhibition

6.4 (5.2–8.2) Nausea and 
hypertension at 
high doses

• Cardiac disease and hypertension
• Use of tramadol

Calcium channel α2δ ligands

Gabapentin, extended-
released gabapentin and 
enacarbil, and pregabalin

Act on the α2δ subunit of 
voltage-gated calcium 
channels, which decrease 
central sensitization

• 6.3 (5–8.4 for 
gabapentin)
• 8.3 (6.2–13 
for extended-
released 
gabapentin and 
enacarbil)
• 7.7 (6.5–9.4 
for pregabalin)

Sedation, 
dizziness, 
peripheral oedema 
and weight gain

Reduce dose in patients with renal 
insufficiency

Topical lidocaine

Lidocaine 5% plaster Sodium channel blockade Not reported Local erythema, 
itching and rash

None

Capsaicin high-
concentration patch (8%)

Transient receptor potential 
cation channel subfamily V 
member 1 agonist

10.6 (7.4–19) Pain, erythema, 
itching and rare 
cases of high 
blood pressure 
(initial increase in 
pain)

No overall impairment of sensory 
evaluation after repeated applications 
and caution should be taken in 
progressive neuropathy

Opioids

Tramadol μ-Receptor agonist and 
monoamine reuptake 
inhibition

4.7 (3.6–6.7) Nausea, vomiting, 
constipation, 
dizziness and 
somnolence

History of substance abuse, suicide risk 
and use of antidepressant in elderly 
patients

Morphine and oxycodone μ-Opioid receptor agonists; 
oxycodone might also cause 
κ-opioid receptor 
antagonism

4.3 (3.4–5.8) Nausea, vomiting, 
constipation, 
dizziness and 
somnolence

History of substance abuse, suicide risk 
and risk of misuse in the long term

Neurotoxin

Botulinum toxin A Acetylcholine release 
inhibitor and 
neuromuscular-blocking 

1.9 (1.5–2.4) Pain at injection 
site

Known hypersensitivity and infection of 
the painful area
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Drug Mechanisms of action NNT* (range) Adverse effects Precautions and contraindications

agent; potential effects on 
mechanotransduction and 
central effects in 
neuropathic pain

*
Number needed to treat (NNT) for 50% pain relief represents the number of patients necessary to treat to obtain one responder more than the 

comparison treatment, typically placebo101.

Nat Rev Dis Primers. Author manuscript; available in PMC 2017 March 29.


	Abstract
	Epidemiology
	Mechanisms/pathophysiology
	Causes and distributions
	Pain signalling changes
	Ion channel alterations
	Second-order nociceptive neuron alterations
	Inhibitory modulation changes
	Pain modulation mechanisms

	Diagnosis, screening and prevention
	Confirmatory tests for nerve damage
	Bedside sensory assessment of sensory signs
	Quantitative sensory testing
	Neurophysiological techniques
	Skin biopsy
	Corneal confocal microscopy
	Prevention

	Management
	Medical intervention
	First-line treatments
	Second-line treatments
	Third-line treatments
	Emerging treatments
	Interventional therapies
	Neural blockade and steroid injections
	Spinal cord stimulation
	Dorsal root ganglion, peripheral nerve and peripheral nerve field stimulation
	Epidural and transcranial cortical neurostimulation
	Deep brain stimulation
	Intrathecal therapies
	Physical therapies
	Psychological therapies

	Quality of life
	Outlook
	Clinical trial design
	Phenotyping
	Personalized pain medicine

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

