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Physiol Rev 101: 259–301, 2021. First published June 25, 2020; doi:10.1152/phys-
rev.00045.2019.—Neuropathic pain caused by a lesion or disease of the somatosensory nerv-
ous system is a common chronic pain condition with major impact on quality of life. Examples
include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central post-
stroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for
example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, partic-
ular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed
nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie
the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying patho-
physiology involves peripheral and central sensitization. Maladaptive structural changes and a
number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive
pathways. These include alteration in ion channels, activation of immune cells, glial-derived medi-
ators, and epigenetic regulation. The major classes of therapeutics include drugs acting on a2d

subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
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I. INTRODUCTION

Pain is an unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual
or potential tissue damage (232, 399a). The English neurol-
ogist George Riddoch in a classical paper from 1938 stated
about pain: “it is experienced only intermittently in the life
of the healthy, its neural mechanisms lying dormant, but vig-
ilant, ready to be awakened if the tissues of the body are
threatened” (414). As such, pain is a warning about tissue
damage signaled by specific receptors and fiber systems
extending from the periphery to the brain. When the normal
pathways are damaged, the immediate consequence is loss

or reduction of function including pain. However, in some
cases as a result of the lesion, pain develops, a condition
termed neuropathic pain. The International Association for
the Study of Pain (IASP) defines neuropathic pain as pain
caused by a lesion or disease of the somatosensory nervous
system (232). This definition replaces an older definition
according to which neuropathic pain was “pain initiated or
caused by a primary lesion, dysfunction, or transitory per-
turbation of the peripheral or central nervous system”
(324). Two changes are important in this change of defini-
tion: dysfunction and the neuronal lesion. In the new defini-
tion of neuropathic pain, dysfunction is no longer accepted
as a criterion because it is difficult to accept symptoms and
soft signs as criteria if they cannot be verified objectively. In

This is a review of the recent advances in understanding neuro-
pathic pain. It covers the clinical presentation, physiological
mechanisms, and treatment of neuropathic pain. The pathophys-
iology involves ectopic activity in damaged nerve fibers and pe-
ripheral and central sensitization. Understanding how various
neurochemical, inflammatory, and structural mechanisms are
linked to specific clinical presentations of the pain may improve
rational pain treatment.
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addition, it is now specified that the lesion needs to affect
the somatosensory system meaning that lesions or diseases
outside the somatosensory pathways, e.g., the cerebellum,
does not qualify as neuropathic (unless future studies docu-
ment that such structures are part of the somatosensory
processing system) (536). The new definition means that a
condition like chronic regional pain syndrome type 1 (CRPS
1) is not considered a neuropathic pain syndrome because
the afferent somatosensory system is intact. Yet these
patients do present with several of the positive symptoms
encountered in patients with neuropathic pain. The impor-
tance to distinguish between chronic pain due to disease or
lesion of the somatosensory system serves the purpose to
delineate the specific characteristics and possibly mecha-
nisms of these conditions.

When lesions of the nervous system occur peripherally or cen-
trally, they may cause sensory loss in the innervation territory
of damaged nerves or in those body parts that correspond to
a spinal or brain territory that has been damaged directly or
indirectly by a lesion or disease. So, an important distinguish-
ing feature in most neuropathic types of pain is the paradoxi-
cal combination of sensory loss and pain either with or
without sensory hypersensitivity phenomena in the painful
area (139, 491). A large group of conditions that differ not
only in their underlying etiology but also in their anatomical
localization are associated with neuropathic pain (443).

II. HISTORY

Pain following injury to the nervous system has been known
under different headings such as nerve injury pain, neural-
gia, deafferentation pain, neurogenic pain, and central pain.
However, in most instances and now also recognized by
IASP, the term neuropathic pain is used to avoid any postu-
lated mechanism or a specific anatomical location of the
lesion. The history of neuropathic pain reports is long with
contributions from many extraordinary and exceptional sci-
entists over the last 100–150 yr. Only a few highlights from
the neuropathic pain history will be mentioned.

Silas Weir Mitchell, considered the father of neurology in
the United States, described in detail his experiences from
examining and treating victims from the Civil War in
America. In the monumental book Injuries of Nerves and
Their Consequences, Mitchell wrote in the chapter on sen-
sory functions of nerve injury (327): “Heightened sensibility,
or that state in which agents usually felt, as touch only,
become painful, is sufficiently common after many forms of
injury. . ..” This description by Mitchell in 1872 is probably
the first example of allodynia (pain due to stimulus that usu-
ally does not produce pain). Mitchell continues: “I have
never been able to discover that the tactile sense had been
thus over-excited so that Weber’s points could be distin-
guished as two, where otherwise they could have been felt

as one. When, indeed, there is hyperesthesia for pain, we are
apt to find it associated with lessened or lost power of tactile
appreciation. . .” showing that the loss of sensibility in the
painful territory is an equal important sign of neuropathic
pain. Mitchell gave here also the first description of causal-
gia, now known as chronic regional pain syndrome type II
(207, 208). Following these first descriptions of the presen-
tation of pain syndromes after nerve injury, others followed
by Foerster, Riddoch, and Livingston (151, 293, 413, 415).
The structure of the nervous system was a key topic for the
Spanish neuroanatomist Santiago Ramon y Cajal. In his
classical book on degeneration and regeneration of the nerv-
ous system (401), Cajal described the consequences of com-
plete and incomplete spinal nerve transections. He
elaborated on this in his Noble lecture “The structure and
connexions of neurons.” Cajal emphasized here the “neu-
rone doctrine,” which states that neurons are individual
cells with dendrites and axons and that these cells function
independently of each other with gaps between them (later
known as synapses) (34). Cajal used the silver nitrate stain
developed by Camillo Golgi to document that nerve cells
are in contiguity, while Golgi believed the nervous system
more acted as a reticular system where the cells were in con-
tinuity like a spider web. Golgi and Cajal, who shared the
Nobel Prize in 1906 for their studies on the nervous system,
met only in Stockholm to receive the award and disagreed
heavily. Golgi gave his Nobel lecture first, defending his hy-
pothesis of “reticular” neural networks, which was strongly
opposed by Cajal. Among Cajal’s many groundbreaking
results, he demonstrated the consequences when nerves
were transected. FIGURE 1 shows such an example, with
degeneration, regeneration, and signs of reinnervation into
the tissue and attempts to reach the distal end of the severed
nerve end.

Henry Head, a neurologist in London, was interested in the
functional consequences of nerve injury. In a remarkable
study, Rivers and Head described the findings following
injury to two cutaneous nerves done by the surgeon Mr.
Dean on Henry Head’s own forearm. The sensory findings
were followed meticulously over the following 4 yr with
almost weekly examination of the sensory changes on
Head’s forearm for various type of sensory stimuli. The find-
ings were described by Rivers and Head in 1908 in a monu-
mental paper of 127 published pages in Brain (417). In this
monumental paper, Head introduced his theory of the epi-
critic and protopathic sensitivity of the somatosensory sys-
tem. The epicritic system refers to precise well-localized
touch and discriminatory thermal sensory stimuli and the
protopathic sensitivity to poorly localized and painful sensa-
tions. The epicritic and protopathic systems would corre-
spond to large and small fiber functions, respectively. Rivers
and Head found that the protopathic system was the first to
recover and that the protopathic sensory system could be
modified by epicritic sensations. These findings were the first
indication of the gate control theory, which was later to be
presented by Melzack and Wall (323). Here, they gave their
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explanation for the dynamic activity of the nociceptive system
and that activity in fast nerve fibers blocks activity in slow
nerve fibers. Wall and Gutnick later showed what happened
after a nerve transection with generation of abnormal

spontaneous activity from regenerating nerve fibers (522).
The spontaneous activity could be modulated by different
types of stimuli, an indication of neuroplastic changes in the
nervous system. This was further documented in other studies
showing the behavioral and electrophysiological changes after
nerve transection (103–105). Here they proposed a presynap-
tic inhibitory mechanism for a dynamic interaction between
afferent input into the spinal cord. While the concept of inter-
action between different types of afferent input into the spinal
cord still is accepted, the idea of a presynaptic inhibition has
clearly been challenged by others (160, 552). Somewhat in
contrast to the Melzack and Wall gate control theory, work
by Christensen and Perl (69) showed that neurons in the mar-
ginal superficial zone of the dorsal horn are exclusively acti-
vated by peripheral noxious input. This and other work
indicate that there is a certain specificity in processing pain.
The complexity of the dorsal horn in pain processing, in par-
ticular the role of the substantia gelatinosa, remains and has
been extensively reviewed (59). Although the pattern theory
laid out by the gate control theory is now considered too sim-
plistic, it raised the important issue that destroying nerve
fibers or other peripheral or central areas involved in process-
ing pain is probably not a way to cure pain, but may in fact
be a paradoxical reason itself for pain. Woolf (531) found
that also central mechanisms contributed to the hypersensitiv-
ity seen after peripheral injury. These studies on nerve injury
represented also the start of a series of new studies on experi-
mental models of neuropathic pain and the associated behav-
ior. Bennett and Xie (33) described the functional changes
after induction of mononeuropathy to the sciatic nerve by
placing loosely constrictive ligatures around the sciatic nerve.
Hypersensitivity changes to mechanical and thermal stimuli
developed in the hindpaw after this sciatic nerve injury.

Lesions of the central nervous system are another well-known
cause of neuropathic pain. This pain, also known as central
pain, was first described by Dejerine and Egger in 1903 where
they reported a case of acute stroke in a 76-yr-old woman
with left-sided paralysis followed by pain and sensory abnor-
malities (90). Head and Holmes described cases of thalamic
lesions with pain and ipsilateral sensory disturbances (217),
and Riddoch concluded that central pain was not only seen in
thalamic lesions, but occurred also with injury to pontine and
medullar part of the brain stem but surprisingly not to the
mesencephalon (414). Today it is known that stroke or other
lesions damaging the somatosensory pathways from the

FIGURE 1. Cajal original drawing number 1693. Cajal’s drawing of
a complete transection of a nerve demonstrating regenerating nerve
sprouts (black dots on nerve fibers) from the proximal stump of the
severed nerve end (A). Sprouts are seen growing down into the distal
stump of the nerve (B), marked as f and g in the figure. A chaotic rein-
nervation occurs at the transection site (C) with fibers projecting
towards the distal end curving back towards the proximal end and
with several fibers forming organized spirals of degenerating and
regenerating fibers (401). [From Ramon y Cajal et al. (401).
Courtesy of Instituto Cajal (CSIC), Cajal Legacy, Madrid.]
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spinal cord to cortical structures may be accompanied by
neuropathic pain (FIGURE2).

III. DIAGNOSIS

There is no gold standard or specific set of methods or bio-
markers that can document neuropathic pain. Certain neu-
ropathic pain conditions like postherpetic neuralgia, painful

diabetic neuropathy, and central poststroke pain can pose
diagnostic problems, but the underlying cause is obvious.
For certain mixed conditions it may be even more difficult
to delineate the boundaries for neuropathic and non-neuro-
pathic pain. With these limitations for a neuropathic classifi-
cation system, what are the essential requirements for a
classification? According to Woolf et al. (532), a classifica-
tion should be valid (i.e., the grouping correspond to a spe-
cific pathological mechanism), reliable (i.e., correspondence

FIGURE 2. Lesions of the nervous system from the peripheral nociceptor to the cortical brain may give rise to
neuropathic pain. The figure illustrates four typical examples of lesions. In the periphery at the receptor level,
mutation in genes may give rise to changes of receptors and ion channels that underlie certain rare neuropathic
conditions such as erythromelalgia and paroxysmal extreme pain disorder. Along the peripheral nerve, different
types of lesions may damage either the entire nerve or selectively the axons or myelin causing axonal or demyeli-
nating neuropathies, respectively. In the central nervous system, lesions of the spinal cord as seen for example
following traumatic injury or in multiple sclerosis may lead to central neuropathic pain. In particular, lesion of the
spinothalamic tract is critical for the development of central pain. In the brain, lesions such as ischemic stroke,
hemorrhages, or multiple sclerosis plaques in the brain stem, thalamus, or subcortical structures are examples
of diseases thatmay lead to central neuropathic pain.
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between examiners and between results from one time point
to the next), and finally, generalizable (i.e., applicable to all
conditions, mild as well as severe). The dynamic nature of
the nociceptive system especially under abnormal conditions
may be an obstacle for finding such universal classification.
When diseases and disorders are dominated by symptoms,
which are merely subjective, and the associated clinical signs
are few or nonexistent, the requirement for validity and reli-
ability becomes even more demanding. Different scales and
questionnaires have during the years been developed in an
attempt to demonstrate discriminative features between
neuropathic and non-neuropathic pain states. But, at this
point, no studies have provided a classification of symptoms
and signs and a scoring system, where the above require-
ments are fulfilled. For that reason, a hierarchical system
has been developed, which is based on a grading of evidence
for the presence of neuropathic pain. This grading system
was presented in 2008 (491) and has recently been updated
(139). According to this grading system, neuropathic pain is
divided into three classes: possible, probable, and definite
neuropathic pain (FIGURE 3). The different levels are deter-
mined on the basis of neurological history, the distribution
of pain, the presence and location of sensory signs, and
finally on a confirmatory test.

IV. CLINICAL MANIFESTATIONS

Most patients with neuropathic pain complain of an
ongoing or intermittent spontaneous pain. Although any
pain descriptor may apply, neuropathic pain is often
described as a burning, shooting, pricking, pins and needles,
squeezing, or freezing pain (24, 45). The spontaneous pain
is sometimes dominated by intermittent electric-shock-like
pain paroxysms either alone or in addition to an ongoing
pain. As a consequence of the nervous system lesion, there
may be nonpainful abnormal sensations. These include dys-
esthesia, which are unpleasant abnormal sensations, and
paresthesia, which are abnormal sensations that are not
unpleasant (232). Both may occur spontaneously or evoked.
Evoked types of pain may occur in addition to spontaneous
pain and rarely as the only pain manifestation (14). Patients
most often complain of touch-evoked or cold-evoked pain.
On examination, allodynia (pain due to a stimulus that does
not normally provoke pain) and hyperalgesia (increased
pain from a stimulus that normally provokes pain) to me-
chanical or thermal stimuli can be found in addition to sen-
sory loss (232). There may be aftersensations, which is pain
continuing after a stimulation has ceased (188); hyperpa-
thia, an abnormal and often explosive painful reaction to a
stimulus, especially a repetitive stimulus in addition to an
increased threshold (221, 232, 346); and referred sensations
with referral of pain or nonpainful sensations to denervated
areas elicited by stimulation of adjacent body areas (143,
251). A poor association between self-reported evoked pain
and gain on quantitative sensory testing is well-known
(173), and discrepancy is also documented between findings
on bedside and quantitative sensory testing (283). The rea-
sons for this may be that the tests are inadequate to capture
allodynia and that the symptoms sometimes occur intermit-
tently and therefore may not be present at examination.

Spontaneous pain often occurs without any evoked pain,
e.g., in painful polyneuropathy (PPN) and complete spinal
cord injury, and evoked pain may rarely occur without any
spontaneous pain. This suggests that evoked and spontane-
ous pain are caused by different mechanisms, or alterna-
tively, by overlapping mechanisms, but preservation or loss
of specific afferent fibers determines the presence or absence
of evoked pain. Several studies in postsurgical pain, posther-
petic neuralgia (PHN), and central neuropathic pain suggest
that early evoked pain or hypersensitivity predicts the later
development of neuropathic pain (144, 200, 264, 317, 420,
546), suggesting that there may be shared underlying
mechanisms.

A. Spontaneous Pain

Spontaneous neuropathic pain may be generated by ectopic
impulse generation in somatosensory pathways or by a sum-
mation of evoked pain due to stimuli of daily activities in
the presence of peripheral and central sensitization (31, 99,

Possible neuropathic pain

Probable neuropathic pain

Confirmed neuropathic pain

History of relevant neurological lesion or diseasea

Pain distribution neuroanatomically plausibleb

Pain is associated with sensory signs in the same neuroanatomically
plausible distribution on clinical examinationc

Diagnostic test confirming a lesion or disease of the
somatosensory nervous system explaining the paind

FIGURE 3. Grading system for neuropathic pain. aHistory, including
pain descriptors and the presence of nonpainful sensory symptoms
compatible with a lesion in the nervous system and not an inflamma-
tory or non-neurological condition. bThe pain distribution reported by
the patient is consistent with the suspected lesion or disease. cThe
area of sensory changes may extend beyond, be within, or overlap the
area of pain. Sensory loss is generally required, but touch-evoked or
thermal allodynia may sometimes be the only finding at bedside exami-
nation. dThe term “definite” means “probable neuropathic pain with
confirmatory tests” because the location and nature of the lesion or
disease have been confirmed to be able to explain the pain. A definite
diagnosis of neuropathic pain requires that other types of pain are
excluded or highly unlikely to entirely explain the pain condition. The
grading system is fully described previously (139).
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224, 533). An ectopic pacemaker may discharge spontane-
ously or in response to other depolarizing stimuli such as cir-
culating catecholamines, temperature changes, ischemia,
hypoglycemia, and mechanical stimulation (99, 102) and
thus be involved in both spontaneous and evoked pain. It is
logical to assume that the quality of pain depends on the
type of fiber generating ectopic evoked or spontaneous dis-
charges according to the labeled line theory. The labeled line
theory postulates that the sensory quality corresponds to ac-
tivity in a specific sense organ and ascending pathway (354,
383). Although the labeled line theory has been challenged
(131), there is often a link between afferent fiber type and
perceived quality. Tingling, pulsating, prickling pain, or
unpleasant sensations are evoked by sea anemone toxin acti-
vation of large Ad and Ab fibers (261), and ectopic nerve
impulses in large fast-conducting myelinated mechanorecep-
tive fibers are found in neurological disorders and suggested
to be associated with tingling or buzzing sensations (56,
353). Burning pain can be elicited by intraneural microsti-
mulation of C nociceptive fibers (362), and the burning pain
elicited by capsaicin (305, 439) or cowhage (191) is likely
mediated by activation of C-fibers, although some role of
myelinated afferents is also suggested (416). Burning pain
elicited by methylglyoxal (121) and sinusoidal electrical
stimulation (244) predominantly involves mechano-insensi-
tive C-fibers. In diabetic PPN, the GAP43-stained intraepi-
dermal nerve fiber density was higher in those with burning
pain, suggesting a role for regenerating C-fibers in burning
neuropathic pain (166). Hyperexcitability and spontaneous
activity in C-fibers have been found in patients with differ-
ent types of PPN (44, 363, 366, 450), and although not all
C-fiber discharges are capable of producing pain (31), ec-
topic activity, in particular mechano-insensitive or sleeping
C-nociceptors, is suggested to be linked to pain (259, 367,
440). Possible sources of ectopic activity involved in neuro-
pathic pain include nerve-end neuroma and regenerating
sprouts (50, 67, 164), neighboring uninjured neurons (535),
compressed nerves or nerve roots (356), dorsal root ganglia
(DRG) (302, 355, 509), the spinal dorsal root entry zone (2,
123, 130, 295), and deafferented neurons in the thalamus
(223, 284, 482).

B. Evoked Pain

Evoked pain requires preservation of afferent pathways, and
deafferentation protects against evoked pain (120, 168, 189,
192, 215, 425, 494). Evoked pain may spread slightly beyond
the innervation territory of the affected nervous structure
(135, 187, 205, 533). The prevalence of evoked pain in neu-
ropathic pain depends on the underlying condition (241). In a
large study using quantitative sensory testing in patients with
mixed neuropathic pain conditions, dynamic mechanical
allodynia was present on average in 19.7%, most common in
PHN (49%), and least common in PPN (12%); pinprick
hyperalgesia was present in 36% in PHN, 30% in peripheral
nerve injury, 22% in central pain, and 9% in PPN; and cold

and warm allodynia was present in 21% in PHN, 25–27%
in peripheral nerve injury, 6–10% in central pain, and 2–7%
in PPN (307). With the use of patient-reported outcomes
from the Neuropathic Pain Symptom Inventory, 55% had
brush-evoked allodynia, 31% pain evoked by contact with
cold objects, and 52% pressure-evoked pain, and evoked
pain to any of these three ranged from 44% in painful radic-
ulopathy to 51–64% in PPN and 92% in PHN (16). Similar
findings were found using the painDETECT questionnaire,
where 47% of patients with PHN and 18% of patients with
PPN reported clinically relevant touch-evoked allodynia,
and 31 and 14%, respectively, reported allodynia to cold or
warmth (24).

Pinprick (punctate) hyperalgesia is thought to be caused by
central sensitization with decreased threshold or increased
response to nociceptor input (253, 266), but microneurogra-
phy studies also suggest a role of mechano-insensitive C-fibers
in pinprick hyperalgesia in the secondary hyperalgesia area
following capsaicin injection (434, 451). Dynamic mechani-
cal allodynia (DMA) or touch-evoked allodynia is a specific
type of allodynia, because the evoking stimulus is under nor-
mal conditions not capable of activating nociceptors, and it is
therefore not a result of a change in threshold or a response
to suprathreshold stimuli (294). DMA in neuropathic pain
shares features with DMA in the secondary hyperalgesia area
in experimental pain models, like capsaicin, suggesting that
they may have similar underlying mechanisms (54, 188, 190,
267, 364, 431). Most studies support that DMA is mediated
by central sensitization to input from low-threshold Ab fibers
(60, 253, 266, 279, 364, 489), and the presence in neuro-
pathic pain requires intact large fiber innervation (192, 517).
The exact mechanism how large fiber input gains access to
the nociceptive pathways in the presence of central sensitiza-
tion is unclear, but may involve sprouting of Ab fibers into
lamina II of the spinal cord (303, 534), phenotypic switch of
Ab fibers (352), disinhibition of pre-existing pathways (442,
489), loss of inhibition from low-threshold mechanoreceptive
C tactile afferents (290), disrupted chloride-mediated spinal
inhibition (73, 311, 412, 489), and disturbed supraspinal
coding of the balance between altered Ab fiber firing fre-
quency and nociceptive input (296). Preclinical studies sug-
gest a role for unmyelinated low-threshold mechanoreceptors
(446), and clinical studies also suggest that DMA is mediated
through low-threshold C-fibers that signal the pleasantness of
gentle skin stroking, although the role of these fibers in neuro-
pathic pain is still unsettled (289, 446).

Hyperalgesia and allodynia to blunt pressure are suggested
to be mediated mainly by peripheral sensitization of C-fibers
(250, 253, 266, 364). Mechano-insensitive C-fibers have
been shown to be able to encode pressure-induced pain and
may play a role in pressure hyperalgesia (441). In diabetic
PPN, patients carrying rare variants in the voltage-gated so-
dium channel Nav1.7, a key determinant for neuronal excit-
ability, had lower pressure pain thresholds than those not
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carrying the variant, consistent with peripheral mechanisms
(41). Decreased pressure pain thresholds are, however, also
found in patients with central pain (475), suggesting that
pressure pain allodynia can also be caused by central
mechanisms.

Neuropathic pain patients complain more often of cold than
warm allodynia, although both signs are found on examina-
tion (307). Cold allodynia is particularly common in central
pain (144, 264, 514), small fiber neuropathy due to non-
freezing cold injury (344, 504), the acute phase after treat-
ment with the chemotherapeutic agent oxaliplatin (13, 219,
511, 512), and Ciguatera, which is a neurological disorder
caused by ciguatoxins found in tropical fish (551). In periph-
eral neuropathic pain, sensitization of different types of pri-
mary afferents may cause cold allodynia depending on the
cause. A differential compression blockade of A-fibers abol-
ished cold allodynia induced by oxaliplatin, suggesting that
it is mediated by A-fibers (153), consistent with the fact that
the evoked sensation is described as a pricking dysesthesia
or pain (219, 512). Studies using nerve excitability testing
indicate that it is caused at least partly by slowing of sodium
channel inactivation (219, 376). Spontaneous generation of
action potentials and sensitization to cold and menthol
responsiveness of C-nociceptors have been identified using
microneurography in a patient with small fiber neuropathy
and cold allodynia, and it is likely that C-fibers are involved
in cases where cold allodynia is perceived as a deep aching
and burning sensation (452). Abnormal expression of tran-
sient receptor potential (TRP) melastatin 8 (TRPM8) chan-
nel or disinhibition by loss of Ad fibers may underlie this
sensitization (55). In addition to sensitization of peripheral
nerve fibers, central sensitization of spinothalamic pathways
or central disinhibition may play a role, particular in central
pain conditions (76, 320). Heat allodynia and hyperalgesia
are characteristic of inherited erythromelalgia, which is a
painful condition with severe burning pain in the feet and
hands with vasodilatation and reddening of the skin (111,
112). The condition is linked to a missense mutation in the
Nav1.7 channel (111) and spontaneously active and sensi-
tized mechano-insensitive C-fibers (257, 367), but also to
alterations in peripheral axonal membrane function in large
fibers possible due to Nav1.7-mediated disturbances in vas-
cular regulation (132). Heat allodynia in other neuropathic
pain conditions is not well-understood but may involve
both peripheral and central sensitization, altered TRP vanil-
loid 1 (TRPV1) function (39), and disinhibition (168, 537).

C. Aftersensations, Hyperpathia, and
Referred Pain

Aftersensations are common in different types of neuro-
pathic pain states (188). Ephaptic, or “electrical” crosstalk
and crossed afterdischarges, as well as central sensitization,
including decreased inhibition and facilitated excitation, are
suggested to be involved in temporal summation and

aftersensations (100, 188, 280, 506). Hyperpathia is defined
by IASP as “a painful syndrome characterized by an abnor-
mally painful reaction to a stimulus, especially a repetitive
stimulus, as well as an increased threshold” (232). It was
first described by Foerster in 1927 as an intense, explosive
pain to stimuli right above threshold and with spread of
pain and aftersensations in patients who recovered after
nerve injury (151, 221). He found that it was present during
recovery of pain sensation until recovery of large fiber func-
tion and suggested it is caused by disinhibition from loss of
large fiber functions in combination with regenerative and
repair processes (151). It is likely to involve both peripheral
and central sensitization. Referred pain and referred sensa-
tions to denervated or missing limbs by stimulation of adja-
cent body areas are reported in, e.g., plexus avulsion (143,
227), amputation (200a, 396, 400), and spinal cord injury
(333), but also to areas of neuropathic pain with preserved
sensation as described in a patient with PHN (154). Early
brain imaging studies have linked referred pain to cortical
reorganization and invasion of the deafferented cortex by
neighboring representations (195, 400). The causal role of
cortical reorganization for referred pain has been questioned
because pain may be referred to areas with preserved sensa-
tion (154), to the contralateral side (265, 346), and to areas
which have segregated cortical activation (143, 154, 333),
and thus cannot be explained by a simple S1 remapping but
rather point to a subcortical mechanism. The cortical
changes are thus suggested to represent a relay of subcortical
change (150). A spinal or brain stem mechanism of referred
sensations is compatible with the elicitation of referred pain
from dermatomes adjacent to deafferented areas (143, 154,
333), short latency of evoked referred muscle jerks and late
compound muscle axonal potentials occurring simultaneous
with the referred sensations (143), and abolishment of trig-
ger zones and referred pain associated with root avulsions
with dorsal root entry zone lesions (345, 374). The mecha-
nisms are unclear, but one study suggested that it involves a
shift from inhibitory towards facilitatory descending activa-
tion because of increased functional magnetic resonance
imaging (MRI) signal activity in supraspinal structures (e.g.,
periaqueductal gray and subnucleus reticularis dorsalis) after
capsaicin application in a patient with referred pain (154).
Other proposed mechanisms involve increased receptive
fields of second-order neurons and sprouting and unmasking
of normally ineffective connections due to central sensitiza-
tion in addition to a rostral and caudal spread of neuronal
hyperexcitability in the spinal cord and brain stem (115,
150, 295, 521). It is also suggested to involve loss of presyn-
aptic inhibition of propriospinal multisynaptic pathways in
the deep dorsal horn with disinhibition of dual perceptions
with referral to the deafferented area (142, 342, 346).

V. DISEASE-BASED CLASSIFICATION

Neuropathic pain is traditionally classified based on under-
lying disease. In the newly released ICD11 classification,
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neuropathic pain is first organized into peripheral and cen-
tral neuropathic pain based on the location of the lesion or
disease in the peripheral or central somatosensory nervous
system (443). Within each of these categories, pain is classi-
fied into different neuropathic pain conditions based on the
underlying disease (FIGURE 4) (443). In this review, the
focus will on the most common neuropathic pain condi-
tions, but other conditions, e.g., carpal tunnel syndrome and
other mononeuropathies, painful plexopathy, inherited
erythromelalgia, and other gain-of-function mutations (30),
are not described in detail.

A. Trigeminal Neuralgia

Trigeminal neuralgia is a specific type of orofacial pain
affecting one or more divisions of the trigeminal nerve (79).
The diagnosis depends on the patient’s description of char-
acteristic electric shock-like pain attacks that are abrupt in
onset and termination, last a few seconds to less than 2 min,
and occur spontaneously or evoked by innocuous stimuli at
trigger zones (79, 303a). The trigger zones are within cuta-
neous or mucous trigeminal areas, and chewing, touch,
tooth brushing, or washing may provoke a paroxysm. It is

debated whether the spontaneous attacks are truly sponta-
neous or in fact stimulus-depended attacks triggered by sub-
clinical stimuli (109). The frequency of attacks varies (304,
543). There is often a remission period lasting weeks to
years where patients are pain free (109, 544). Despite being
classified as a peripheral neuropathic pain, the lesion is often
within the root entry zone, where the myelin is primarily
produced by central nervous system oligodendrocytes that
extent beyond the pons and transits into myelin produced
by peripheral Schwann cells, and the lesion may also be in
the brain stem within the central nervous system, and tri-
geminal neuralgia is thus sometimes a central pain condition
(96, 197, 229, 297, 299, 382, 460).

The underlying cause of classical trigeminal neuralgia is
thought to be a vascular compression of the trigeminal nerve
root in the cisternal segment, the root entry zone, or the
pontine segment resulting in morphological changes and at-
rophy in the nerve (10, 197, 229, 304a, 356), and case series
suggest that the effect of microsurgical decompression or
radiosurgery is related to more severe compression of the
nerve (22, 228, 433, 461). Electron-microscopic and immu-
nohistochemical examinations of nerve biopsies taken dur-
ing surgery for microvascular decompression have shown

Peripheral neuropathic pain Central neuropathic pain

Postamputation pain
(stump and phantom pain) 

Trigeminal neuralgia Painful radiculopathy Central post-stroke pain

Postherpetic neuralgia

Painful polyneuropathy Peripheral nerve injury pain

Spinal cord injury
neuropathic pain

(at- and below level pain) Central pain in
multiple sclerosis

FIGURE 4. Classification of neuropathic pain and examples of the neuroanatomical distribution of pain and sen-
sory abnormalities (139).
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demyelination and myelin abnormalities as well as axonal
damage, atrophy, and sprouting (101, 222, 299, 312, 404).
The prevailing theory is that the spontaneous pain parox-
ysms are generated by spontaneous discharges in damaged
neurons with lowered threshold for repetitive firing and
cross-excitation to hyperexcitable neighboring neurons (5,
312, 356, 403). Since there may be an immediate relief of mi-
crovascular decompression and recovery of trigeminal nerve
root conduction, it is suggested that the underlying cause can
be a transient conduction nerve block (282). Functional
cross-excitation between neurons may also explain pain
evoked by touching trigger zones with spike activity in large
myelinated A fibers activated by touch causing depolarization
in neighboring C-neurons (5, 403). Progression to severe
nerve root damage is likely to cause more prominent sensory
loss and possible continuous pain because of continuous ec-
topic discharges (51, 356). Retrograde biochemical distur-
bances and immune reaction of the trigeminal ganglion and
inflammation may also be involved (127, 312). Neuro-
imaging studies have also documented subtle grey and white
matter loss in brain areas involved in pain perception (96–
98), but it is unclear if these changes are secondary and adapt-
ive changes to ongoing activity from focal nerve damage or if
they contribute to pain (361). The unique acute response of
this neuropathic pain condition to microvascular decompres-
sion, radiofrequency ablation, and other treatments targeting
the nerve directly supports that the pain generator is within
the damaged section of the nerve (356).

Secondary trigeminal neuralgia is caused by a neurological
disease such as a tumor or multiple sclerosis (79). Multiple
sclerosis is the most common cause of secondary trigeminal
neuralgia, and 1–5% of patients with multiple sclerosis ex-
perience trigeminal neuralgia (79, 108, 179, 358, 496).
Secondary trigeminal neuralgia in multiple sclerosis com-
mences at earlier age and is more often bilateral and is
reported to be more severe and intractable than primary tri-
geminal neuralgia with reduced length and duration of
remissions, fewer identifiable pain triggers, and more impact
on quality of life (179, 242). Secondary trigeminal neuralgia
is often caused by demyelinating lesions or tumors in the cer-
ebellopontine angle between the root entry zone and the tri-
geminal nuclei along the intrapontine trigeminal primary
afferents (78, 108). In some cases there is a coexisting neuro-
vascular compression (298, 496). Electron microscopy of
trigeminal rhizotomy specimens has revealed demyelination,
gliosis, and inflammation in the proximal part of the trigem-
inal nerve root, which could be a possible source of ectopic
activity (281, 298).

B. Neuropathic Pain Following Peripheral
Nerve Injury

This is a heterogeneous group of neuropathic pain condi-
tions caused by a lesion of a peripheral nerve, e.g., during
surgery or because of a trauma. There is a clear link between

the risk of nerve damage, e.g., during surgery, and the risk
of developing chronic neuropathic pain (28, 212, 225, 463),
but there is no clear association between severity of injury
and type (transecting, stretching, crushing) of nerve damage
and the development of neuropathic pain (8, 305a). In gen-
eral, it is unclear why some patients with nerve damage de-
velop pain while others do not. Partial axonal damage
including small fiber dysfunction as opposed to demyelinat-
ing damage was a risk factor in one study with iatrogenic in-
ferior alveolar nerve injury (234a). High intraindividual
concordance for neuropathic pain in patients with bilateral
amputation or thoracotomy suggests that patient-related
factors play a role (386, 471), and the underlying mecha-
nisms likely involve an interplay of peripheral and central
nervous system changes, and genetic and psychological fac-
tors (186, 487).

The main mechanism underlying pain in posttraumatic
nerve injury, including phantom and stump pain after ampu-
tation, is likely to be ectopic impulses generated at the site of
nerve injury or the DRG. This is supported by the temporary
effect of surgical removals of neuromas, which are neural
sprouts developing at the proximal end of a transected nerve
(325, 395), and of peripheral nerve blocks (50, 61, 211,
326, 357, 509) on ongoing and evoked pain in peripheral
nerve injury pain including phantom pain. In human painful
neuromas, an upregulation of Nav1.3, 1.7, and 1.8 as well
as an upregulation of activated p38 and elongation factors
associated with translation (EFT1/2) mitogen-activated pro-
tein (MAP) kinases have been found (40). These may be mo-
lecular drivers of pain, as abnormal accumulation of such
sodium channels can cause hyperexcitability and ectopic
impulse generation (30, 428). A low-grade inflammation
and pro-inflammatory cytokines may be additional factors
associated with pain after peripheral nerve injury (220, 338)
as discussed further below. Central sensitization involving
the spinal cord and brain stem is likely to be involved partic-
ularly in referred sensations and spread of allodynia and
hyperalgesia to neighboring dermatomes (142, 205, 280).
Supraspinal neuroplastic changes and cortical reorganiza-
tion (148, 149) are also seen after amputation, but the asso-
ciation between chronic pain and reorganization after
amputation is uncertain (246, 309).

C. Painful Polyneuropathy

The most common and well-described types of PPN are
those due to diabetes, human immunodeficiency virus
(HIV), chemotherapy, and leprosy (68, 125, 133, 466, 486).
Other causes include Fabry disease (37, 332), sodium chan-
nel gene mutations (86), autoimmune diseases (86), vasculi-
tis (71, 498, 502), chronic inflammatory demyelinating
polyneuropathy (485, 502), amyloidosis (349, 391, 454),
alcohol (429), nonfreezing cold injury (504), and paraneo-
plastic syndrome (553). Malnutrition and vitamin deficiency
are other causes. PPN related to severe malnutrition was
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described in detail in case reports from Far East Prisoners of
War during World War II, most likely caused by deficiency
of B vitamins (421), and acute or subacute forms may be
seen as complications to nutrient deficiencies associated
with weight loss, eating disorders, and bariatric surgery
(159, 202). There may be multiple causes of PPN in the
same patient (86, 184), and in many patients the etiology
remains unknown (86, 185, 466, 483).

Pain may be the first symptom of a neuropathy, but often
the onset is insidious starting with paresthesia and eventu-
ally dysesthesia or pain. The pain is often an ongoing
squeezing, pricking, or burning pain, and evoked types of
pain are less common. Dependent on the affected nerves,
there may be decreased reflexes, weakness, and autonomic
changes. The most common form is a symmetric length-de-
pendent polyneuropathy with symptoms in the feet, pro-
gressing proximally affecting the lower legs and hands. A
specific acute form of polyneuropathy is seen after abrupt
improvement in glycemic control in patients with diabetes
and poor glycemic control (172). The pain is typically a
severe burning pain accompanied with hyperalgesia, allody-
nia, and autonomic abnormalities (172). Little is known
about underlying mechanisms. Another type of acute poly-
neuropathy is seen after treatment with the chemotherapeu-
tic agent oxaliplatin, which causes an acute partly reversible
neuropathy in almost all patients and a chronic length-de-
pendent sensory neuropathy in only a smaller proportion
(511). The acute neuropathy develops during or within
hours of receiving chemotherapy and is characterized by
pricking parasthesia, cold allodynia, and muscle cramps
mainly in the hands and perioral area. Nerve conduction
studies are normal, indicating no axonal loss of large my-
elinated fibers but show neuromyotonia-like repetitive
motor discharges. Nerve excitability testing shows promi-
nent nerve excitability changes correlating to sensory symp-
toms and which are well modeled by a slowing of sodium
channel inactivation (29, 219, 376).

The underlying pathogenesis of chronic polyneuropathy has
been extensively studied and can be divided into effects on
the dorsal ganglion neuron, the axon, and the myelin sheath
or Schwann cells (245, 466, 505). The mechanisms are
diverse and include endothelial abnormalities (35), dis-
rupted Schwann cell function (181), capillary dysfunction
(369), breakdown of the blood-nerve barrier (411), apopto-
sis (177), elevated oxidative stress (236), direct toxic effects
(82, 245), mitochondrial DNA damage (392), loss of neuro-
filament polymers (445), and impaired axonal transport and
microtubule function (268, 470). Less is known from clini-
cal studies about the risk and mechanisms of pain in those
with chronic polyneuropathy and why some patients remain
pain free despite similar degree of polyneuropathy (68, 133,
218). Studies consistently point to increasing severity of
chronic sensory neuropathy as a risk factor for pain (46,
199, 218, 316, 405, 488). It is more uncertain whether pain
is related to loss of specific fiber types. Neuropathic pain is a

cardinal finding in pure small-fiber neuropathies (467, 483),
and sometimes pain is considered to be related to more
severe small fiber loss consistent with some studies finding a
relation between small fiber loss and pain (316, 394).
However, patients with severe small-fiber loss may be pain
free, most studies find an equally severe loss of large-fiber
function in those with painful compared with nonpainful
polyneuropathy, and patients with pure large-fiber loss may
experience neuropathic pain (46, 116, 300, 307, 316, 388,
405, 437, 488, 497, 502). It is possible that the high fre-
quency of pain in small fiber polyneuropathy is because pain
is the symptom that leads the patient to seek medical care,
and the link between pain and specific pain phenotypes and
loss of specific fibers remains unclear.

While the classical length-dependent chronic polyneurop-
athy is most often characterized by sensory loss and only a
few patients experience sensory gain (307, 488, 502),
evoked pain to mechanical or thermal stimuli is more preva-
lent in painful than pain-free polyneuropathy (46, 316, 488,
502). This may suggest that neuronal hyperexcitability is
involved, but our assessment of fiber structure and function
is limited by our ability to mainly assess fibers that innervate
the skin. Microneurography has documented hyperexcit-
ability and spontaneous activity in C-fibers in painful
polyneuropathy (363, 366, 450), and particular sponta-
neous activity and hyperexcitability in mechano-insensi-
tive C-nociceptors seems to be linked to pain (259). In an
open-label study, patients had complete relief of pain
related to polyneuropathy after an ultrasound-guided pe-
ripheral nerve block with lidocaine supporting the notion
that the pain generator is within the peripheral nerves (211).
Possible molecular mechanisms that may underlie the neuro-
nal hyperexcitability and ongoing activity within sensory
neurons in chronic painful polyneuropathy, including altered
expression of ion channels and receptors (47, 287, 467),
increased expression of reactive metabolites such as methyl-
glyoxal (38, 121), altered neurotransmitter release (47), and
inflammatory factors (72, 125, 399, 499–501), are further
described in section VI, and the possible role of genetic var-
iants in genes encoding sodium channels (41, 133, 467) in
section VII. Human studies also suggest that patients with
PPN have changes in spinal (315) and ventrolateral peria-
queductal grey-mediated pain modulatory systems (448),
altered brain connectivity (58), and structural brain changes
(449), but more studies are needed to understand the speci-
ficity of these changes to pain and a possible causal role in
the pathophysiology of pain.

D. Postherpetic Neuralgia

PHN is pain that persists for more than 3 mo after herpes
zoster onset (443). It occurs in 5–20% of patients with her-
pes zoster and more frequently in the elderly, and while it
resolves over time in some patients, it may become chronic
and persistent in a significant proportion (122, 152, 200,
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389, 407). Both the live-attenuated and the adjuvant subunit
herpes zoster vaccine reduce the risk of herpes zoster and
PHN with 50–90% (49, 81, 260, 372). Patients with PHN
have reduced unmyelinated and myelinated innervation on
the affected side (360, 495), and a prospective study found
that initial neural injury is more severe in those who develop
PHN but that pain may recover despite only modest recov-
ery of sensory function and reinnervation of the skin (384,
385, 407).

Herpes zoster is caused by reactivation of varicella zoster vi-
rus in the cranial nerve or spinal DRG, which undergoes
axonal transport causing inflammation and necrosis in the
ganglion, nerve, and nerve root, and thus the distribution of
PHN is dermatomal (176, 216). Controversy has existed as
to which ganglionic cell types harbor the latent virus, and
while studies using PCR in combination with in situ hybrid-
ization suggested that latent virus resides mainly in neurons
(176, 277), new models of in vitro human neuron culture
systems also point to a role of satellite glial and Schwann
cells (276, 547). These models are expected to give more
insight into the latent state of zoster virus in the future. The
mechanisms underlying PHN are similarly not well under-
stood (170). Post mortem analysis of three early cases with
severe PHN and two with no persistent pain showed loss of
ganglion cells, axons and myelin and dorsal horn atrophy in
patients with PHN, but the low number of subjects preclude
establishing a clear link to PHN (525). A later MRI study
found that high-signal intensity areas in the brain stem was
found on T2-weighted MRI scans more frequently in
patients with PHN at 3 mo, but none of the patients contin-
ued to experience chronic PHN (199a). A more recent post
mortem analysis of a single patient with PHN for 5 wk
showed inflammatory responses in the spinal cord dorsal
horn with macrophage and lymphocytic infiltration and
vacuolization of the dorsal horn with no signs of inflamma-
tion in the nerve roots, and the authors suggested involve-
ment of the spinal cord in PHN (336). Varicella zoster virus
DNA has been detected in blood mononuclear cells in
patients with PHN, and Gilden et al. (175) suggested that
PHN is a consequence of persistent chronic ganglionitis.
These findings were, however, not reproduced in one study,
which rather suggested that PHN is a consequence of neuro-
nal damage accompanying replication of VZV in ganglia
during zoster episodes (444). An in intro study using single
cell patch clamping recordings in neuroblastoma cells
infected with varicella zoster virus from patients with and
without PHN found that the strains from PHN patients had
altered Nav1.6 and Nav1.7 voltage-gated sodium channel
current amplitudes, suggesting a role of sodium channels
(252). Another study found increased sodium channel
immunolabeling in the skin keratinocytes in a patient with
PHN, and the authors speculated that this increased expres-
sion contributed to pain by activation of P2X receptors on
primary afferents via epidermal adenosine triphosphate
(ATP) release (549). The effect of topical lidocaine in PHN

supports a role of sodium channels in the skin or nerve end-
ings (423).

E. Painful Radiculopathy

Painful radiculopathy is caused by a lesion or disease involv-
ing the cervical, thoracic, lumbar, or sacral nerve roots
(443). Herniated disks and degenerative changes of the spi-
nal column are the most frequent causes, but it can also
result from, e.g., trauma, neoplastic disease, and infections.
Like other patients with neuropathic pain, the pain dimen-
sions include burning, squeezing/pressing, pricking, parox-
ysmal, and evoked pain (16), and patients often present
with sensory loss on quantitative sensory testing, but few
patients report touch-evoked and thermal allodynia (163,
306). Despite being the most common neuropathic pain
condition, we know little about underlying pain mecha-
nisms, and no single drug treatment has yet proven to be
effective (137, 313).

In a recent study, DRGs were taken from patients under-
going surgery for malignant tumors in the spine (355).
Patch-clamp electrophysiological recordings and RNA-
sequencing documented a link between spontaneous action
potential generation and radicular neuropathic pain and
nerve root compression on MRI (355). Mechanical com-
pression of the DRG (226) and inflammation around the
nerve root (9, 330, 343, 351, 379, 476) can contribute to
such ectopic pulse generation. Substances and breakdown
products released from nucleus pulposus in degenerating
disks are thought to be involved in inducing the inflamma-
tory response (331, 472). In addition to inflammation, acid-
ity of the degenerating nucleus pulposus and functional
expression of proton-sensing ion channels such as TRPV1
and acid-sensing ion channel (ASIC) along sensory axons
may be an additional pathophysiological mechanism (110,
147, 174, 258).

F. Central Neuropathic Pain

Central neuropathic pain is pain caused by a lesion or dis-
ease of the central somatosensory nervous system (240).
The most common conditions are spinal cord injury in
which central pain develops in �50% of patients (52, 140,
455), stroke in which 8–10% of patients develop chronic
central pain (7, 210, 262, 359), and multiple sclerosis with a
prevalence of central pain of 20% (368). The risk of devel-
oping central poststroke pain is highest in patients with lat-
eral medullary and thalamic infarctions, in particular lesions
involving the anterior pulvinar region of the thalamus, a
major spinothalamic target (508). Central pain develops im-
mediately after the insult or can have a delayed onset up to
6–12 mo but rarely longer (140, 210). It may resolve in
some patients during the first year, but in others could tend
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to become chronic and life-long, sometimes with severe psy-
chosocial and functional consequences (455, 528).

Central sensitization is likely the main cause of central pain
and its different characteristics, including ongoing pain,
allodynia, hyperalgesia, aftersensation, and temporal sum-
mation (507). As discussed by Gary Bennett (31), spontane-
ous pain may not always be caused by ectopic discharges in
the partially preserved or deafferented central pain path-
ways, but could in some patients result from decreased
thresholds and temporal summation of stimulus-evoked
pain occurring from stimuli from daily activities, e.g.,
breathing, touch from clothes, and ambient temperature.
Relief of ongoing spontaneous pain by peripheral nerve
block with lidocaine in an open-label study in patients with
both spontaneous and evoked central poststroke pain sup-
ports this theory (213). Several studies have also found that
early sensory hypersensitivity predicts the later development
of central pain after spinal cord injury and stroke (144, 264,
546), further supporting a link between neuronal hyperex-
citability and spontaneous pain.

As for other neuropathic pain conditions, the risk of devel-
oping central pain is related to the risk of damage to the
somatosensory nervous system, but not all patients with
such damage develop pain. There is a long line of research
linking central pain to a lesion of the spinothalamocortical
tract (for further discussion, see sect. VID). Decreased sensa-
tion to pain and temperature is a hallmark of central pain
(43, 255, 263), but not all patients develop central pain and
a lesion is not sufficient to cause pain (169). Wasner et al.
(524) examined patients with clinically complete spinal cord
injury and found that 8 of 12 patients with central pain had
some preserved thermal and pain sensation particularly after
sensitizing the skin with capsaicin, while this was not the
case in patients without pain, and they suggested that resid-
ual spinothalamic tract pathways play a role in maintaining
central pain. Pain can be evoked by suprathreshold stimula-
tion of the spinothalamic tract (397), and other studies sup-
port the hypothesis that pain is generated in the damaged
spinothalamic tract following spinal cord injury (209, 527).
Various disinhibition theories have been proposed but also
questioned. These include imbalance between spinothalamic
tract pathways and the dorsal column (36), spinoreticulo-
thalamic pathways (373, 481), or medial pathways (76),
between the medial and lateral thalamus (217), or as a loss
of descending inhibitory pathways (4, 194, 237).

Central pain can also develop in patients with a complete
transection of the spinal cord (322), and in these patients,
the pain generator must be located at rostral deafferented
sites. One possible site in both complete and incomplete spi-
nal cord injury is the neurons in the rostral part of the spinal
cord. A link between at-level sensory hypersensitivity and
below-level pain (141, 145, 286), the occasional pain relief
by spinal transection (117), and the effect of dorsal root

entry zone lesions on pain and high-level spontaneous and
evoked neuronal activity in the rostral spinal cord (117,
123, 130) support the role of this region for central pain in a
subgroup of patients with spinal cord injury and central
pain. Another plausible structure involved in generating
pain is the thalamus. Proton magnetic resonance spectros-
copy studies have documented decreased levels of N-acetyl
possibly reflecting dysfunction of inhibitory neurons and
higher levels of the glia markermyo-inositol in the thalamus
(378, 527), and electrical stimulation in the thalamus, par-
ticularly the ventral caudal sensory nucleus of the thalamus,
which receives dense STT terminations, can provoke pain to
deafferented areas resembling the patient’s own pain (284,
285, 482).

Central pain may also be seen in patients with brain trauma,
brain tumors, and possibly Parkinson’s disease (314, 365).
In patients with epilepsy, a seizure can trigger the experience
of pain, particularly with lesions in the operculo-insular cor-
tex (the medial part of the parietal operculum and neighbor-
ing posterior insula), an area where electrical stimulation
can also trigger pain (319). Plexus avulsion is an injury, typi-
cal after a motorcycle accident, where the nerve root is torn
from its attachment at the spinal cord, and it affects both
the peripheral and central nervous system in the transition
zone. These patients typically complain of severe crushing
pain in the deafferented hand with additional paroxysmal
pain shooting down the arm (227). There is evidence sug-
gesting that the pain originates within the spinal dorsal horn
(114, 239, 370, 371), and it is the pain condition with the
best success of dorsal root entry zone lesions (2, 406, 477).

VI. MECHANISTIC INSIGHTS DERIVED
FROM RODENT MODELS OF
NEUROPATHIC PAIN

Below, we briefly discuss major new insights gained from
studies involving pharmacological, genetic, or physical
manipulations at diverse somatosensory avenues in rodent
models of neuropathic pain. Each of these topics is extensive
and can encompass review in its own right; therefore, we
will focus primarily on the newest developments and
insights gained via primary studies in the last handful of
years, citing reviews for older literature and specific topics
that cannot be covered here in detail.

A. RodentModels of Neuropathic Pain and
Tools for TestingMechanisms

Diverse types of neuropathies have been modeled in rodents.
The most widely employed models for physical damage to
peripheral nerves, including models of partial damage, such
as the Spared Nerve Injury (SNI) model (89) or local inflam-
mation-induced nerve damage, such as the Chronic
Constriction Injury (CCI) model. In the SNI model, ligation
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and transection of the common peroneal and tibial branches
of the sciatic nerve evokes intense mechanical and cold allo-
dynia, but not consistent heat hyperalgesia, in the cutaneous
paw territory of the neighboring, undamaged sural branch
of the sciatic nerve. In the CCI model, invasion of the nerve
tissue following chemical pro-inflammatory substances
released by the loose ligature ultimately leads to neuritis and
nerve hypertrophy, resulting in mechanical and heat hyper-
sensitivity (62). While hypersensitivity persists in the SNI
model and shows a ceiling effect owing to its severity, it is
more moderate in the CCI model and diminishes over the
period of few weeks in parallel to the resolution of the nerve
inflammation. Chemotherapy-induced neuropathic allody-
nia and signs of ongoing pain have also been modeled, based
on the clinical finding that antineoplastic agents from the
group of taxanes and platin derivatives, e.g., with models of
oxaliplatin-induced nerve damage being widely used (201).

Injury to central components of the somatosensory nocicep-
tive pathways has also been modeled. Contusion-based
models of spinal cord injury (SCI) in mice and rats are fre-
quently used to study mechanical hypersensitivity, auto-
nomic dysfunction, and challenges to axonal regeneration.
Models involving direct damage to the brain are rare. Pain
can develop in response to stroke, particularly in the thala-
mus leading to thalamic hemorrhage, which has been
recently modeled in mice (193). In contrast to the focal na-
ture of direct injury-induced damage to the nervous system,
metabolic dysfunction can damage neural pathways at pe-
ripheral and central avenues. Models for testing type 1 and
type 2 diabetes are becoming increasingly studied. Type 1 di-
abetes is modeled by streptozotocin (STZ)-mediated toxicity
to b cells in the pancreas, resulting in insulin deficiency. It is
important to use a low-dose model of STZ, which leads to
selective diabetes-related metabolic dysfunction and a pain
phenotype several weeks after STZ treatment, as opposed to
high-dose models and acute analyses which induce and
reflect direct STZ-induced toxicity to nerves, respectively
(158). Mice develop mechanical and heat hypersensitivity at
5–7 wk post-STZ and progressive hypoalgesia starting
around 20 wk, which is accompanied by loss of epidermal
nociceptor nerve endings. There are several models of meta-
bolic syndrome, which although related to type 2 diabetes,
do not entirely mimic type 2 diabetes. In studies on pain, a
model of high-fat diet inducing obesity has been successfully
implemented (134, 238). It should also be noted that there is
increasing evidence of robust structural changes in periph-
eral sensory nerves in diverse models of cancer pain, suggest-
ing that a neuropathic component is also in play. Finally,
virally induced neuropathies, such as central neuropathic
pain upon infection with the HIV, have been modeled via in-
trathecal injection of recombinant HIV glycoprotein
gp120MN (178). Similarly, cutaneous herpes simplex virus
type-1 (HSV-1) infection has been employed to model PHN
in mice (457). In addition to hypersensitivity to heat, cold,
and mechanical stimuli, studies are now increasingly

incorporating nonreflexive voluntary behaviors related to
well-being as well as assays for testing aversion and negative
affect, such as conditional pain aversion or conditioned pain
modulation (390, 479).

B. Tools for Delineating Functional
Contributions and Studying Plastic
Changes

The study of neuropathic pain mechanisms has been galvan-
ized by recent advances in the ability to specifically alter ac-
tivity of specific cells or pathways using light stimuli in
combination with genetically encoded expression of light-
activated channels, enabling reversible and temporally pre-
cise activation or silencing of neuronal activity (optoge-
netics) (254). Similarly, chemogenetics involves genetic
expression of designer receptors activated by designer drugs
(DREADDs), which are G protein-coupled receptors that
can be specifically activated by an exogenous chemical stim-
ulus noninvasively to activate or inhibit neuronal activity
(422). Both types of manipulations can be coupled with
region- or cell type-specific promoters, thereby permitting
enabling highly specific manipulations in pathways, which
are reversible. Cell ablation methods, employing toxins such
as diphtheria toxin, have also advanced our understanding
of pain mechanisms, although they suffer from the caveat of
being irreversible and eliciting major damage and glial and
inflammatory responses. These methods now replace older
techniques for silencing cells (using glutamate receptor
antagonists or GABA agonists) or ablation (using excitotox-
ins), which largely lacked cellular specificity, although some
examples of cell-specific toxins exist, e.g., substance P-con-
jugated saporins that destroy cells expressing neurokinin 1
(NK1) receptors (310).

These advances come on top of advances in genetic tools en-
abling deletion of specific genes in specific cells (conditional
knockout mice using Cre-loxP technology) or their overex-
pression (transgenic mice). Moreover, there have been rapid
advances in viral-mediated gene delivery, again achieving
cell type specificity with the aid of gene promoters, which
can also be employed to knock-down genes using RNA in-
terference. Viral tools are now also available for antero-
grade and retrograde tracing of axonal projections in an
unbiased or cell-restricted manner. These developments
have been matched by advances in noninvasive or minimally
invasive imaging of neuronal circuits at the level of networks
(small animal functional MRI) or at cellular resolution via
calcium imaging using multiphoton microscopy (408).

With the advent of these tools, a major quest in recent
research has been on the functional dissection of which cells,
pathways, circuits, and networks contribute to neuropathic
pain. The backdrop for the quest of functionally active cells
and circuits is given by the large amount of seeming
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redundancy in somatosensory pathways of pain. Below we
discuss functional contributions of peripheral afferents and
spinal circuits.

C. Contributions of Primary Sensory
Populations in Neuropathic Pain

Spontaneous pain is difficult to study in rodents, and thus a
major thrust has been placed in understanding the cellular
basis of how signs of allodynia come about, whereby nor-
mally innocuous intensities of mechanical and thermal stim-
ulation evoke nociceptive responses. Along these lines, it is
critical to understand the individual contributions of specific
types of primary afferent neurons.

A study by Abrahamsen et al. (1) reported that diphtheria
toxin-induced ablation of Nav1.8-expressing nociceptive
neurons in mice resulted in loss of acute mechanical and
cold nociception and inflammatory hypersensitivity, but not
mechanical or heat allodynia after nerve injury. These data
matched the classical view that C-fibers do not change their
activation threshold in neuropathic pain. A recent study
reported that ablation of TRPV1-lineage nociceptors, which
covers a large proportion of C- and Ad fibers, resulted in
loss of neuropathic cold allodynia, but not neuropathic tac-
tile hypersensitivity (70). These reports thus implicate my-
elinated low-threshold fibers (LTMRs) in neuropathic
mechanical allodynia.

This view was supported in part by a recent study employ-
ing cutting-edge optogenetic and photo-ablative approaches
to manipulate a population of peripheral sensory neurons
expressing Trk-B, which span Ab fiber neurons and D-hair
subpopulation of Ad fiber neurons. Ablating Trk-B-express-
ing sensory neurons abrogated responsivity to light touch
under physiological conditions and mechanical allodynia in
mice in the SNI model of neuropathic pain (107).
Conversely, in two independent studies (107, 480), optoge-
netic activation of low-threshold mechanoceptor neurons
evoked phenotypic responses representative of allodynia,
thereby making a strong case that Ab fibers are both neces-
sary and sufficient to produce injury-evoked mechanical
allodynia. Importantly, the peripheral involvement of Ab
fibers in neuropathic mechanical allodynia would indicate
that central mechanisms, not peripheral contributions,
account for the aberrant switch whereby Ab-mediated tac-
tile inputs are perceived to be unpleasant (discussed in the
section below).

In contrast to studies suggesting an exclusive role for Ab
fibers for mechanical allodynia, human electrophysiology
data point to changes that are more aligned to an involve-
ment of C-nociceptors in chronic pain. This has triggered a
long-standing debate as to whether nociceptors or non-noci-
ceptive low-threshold afferents mediate mechanical hyper-

sensitivity. Several recent studies on mouse models support a
role for C-fibers. In direct contrast to the results of
Abrahamsen et al. (1), Séguéla and colleagues (83) report
that reversible optogenetic silencing of Nav1.8 (nociceptive)
fibers significantly reduces thermal and mechanical hyper-
sensitivity in a model of neuropathic pain. This was sup-
ported by findings from Eisenach and colleagues (42), who
directly measured mechanical thresholds of activation of
sensory afferents following nerve injury. They observed a
reduction in C-fiber thresholds, while large-diameter my-
elinated low-threshold fibers actually demonstrated a desen-
sitization and loss of receptive field area, supporting a
model with reduced activation of tactile low-threshold affer-
ents and increased responses of nociceptive afferents.
Moreover, Stucky and colleagues (75) directly tested the
contributions of the peptidergic class of nociceptors,
expressing calcitonin gene-related peptide (CGRP), using
Arch-mediated optogenetic silencing. In mice with nerve
injury, they found that suppression of activity of peptidergic
nociceptors inhibited mechanical and thermal hypersensitiv-
ity and behavioral correlates of spontaneous pain. By per-
forming comparative analyses in a model of postoperative
(largely inflammatory) pain, they suggest that CGRP-
expressing nociceptive afferents contribute pivotally to
nerve injury-induced hypersensitivity, while CGRP signaling
per se is more important in postoperative pain (75).
Peripheral effects of CGRP in rodents may be strain-depend-
ent. Recent evidence suggests that CGRP released at the cen-
tral terminals of nociceptors facilitates central sensitization
(234).

This is also largely consistent with insights emerging in other
animal models of other types of neuropathic pain. Most
studies have addressed circuit contributions in neuropathic
pain induced by peripheral nerve trauma, while functional
studies on other clinical states of neuropathic pain are just
emerging. In models of spinal cord injury-induced neuro-
pathic pain, heat hypoalgesia, mechanical allodynia, and
spontaneous pain were accompanied by a marked sprouting
of C-nociceptors in spinal sensory-motor circuits in injured
mice (347). Both, pain sensitivity and C-fiber sprouting
were reversed by physical training. Moreover, in a model of
type 2 diabetes, a study by Menichella and colleagues (238)
reported that chemogenetic silencing of nociceptive afferents
selectively depressed mechanical and thermal hypersensitiv-
ity. In a model of type 1 diabetes, Dhandapani et al. (107)
observed a blockade of mechanical hypersensitivity by opto-
genetic inhibition of low-threshold mechanoceptors (i.e., Ab
fibers), suggesting a role also of these fibers. Taken together,
this suggests that the precise contributions of different types
of afferent fibers are state- and context-dependent and vary
between disorders. Viewing the current literature, we do
however, note that the old notion of lack of involvement of
nociceptors in neuropathic mechanical allodynia is increas-
ingly being questioned, and evidence to the contrary is
mounting.
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There are additional subtypes of primary afferents that still
require clarification in terms of contributions to neuropathic
pain. For example, a clinically-relevant subtype of nocicep-
tors, termed “silent nociceptors,” comprises mechano-insen-
sitive neurons that gain mechanosensitivity in an
inflammatory milieu. It should be noted, however, that a
majority of these “mechano-insensitive” C-nociceptors
respond to heat and show distinct membrane attributes, as
seen by their pronounced activity-dependent slowing prop-
erties (526). Their chemical identity, however, was long
unknown. A recent study described the nicotinic acetylcho-
line receptor subunit a-3 (CHRNA3) to be a molecular
marker for silent nociceptors. Using mouse genetics and
electrophysiology, Prato and co-workers (435) demon-
strated their switch from mechanically insensitive in physio-
logical conditions to sensitized and mechanically responsive
under inflammatory conditions. It remains to be determined
whether this class of afferents contributes to neuropathic
pain. Similarly, the molecular identity of thinly-myelinated
Ad fibers was recently decoded by a study, which found that
NPY2R-expressing sensory neurons represent this subpopu-
lation of nociceptors that functionally mediates acute pin-
prick pain (11). Complementary to the analysis of the
peptidergic subclass of nociceptive primary neurons [see
above, Cowie et al. (75)], it will be interesting to test the
contribution of the NPY2R population to neuropathic pain.

A small subpopulation of C-fibers is comprised of low-
threshold mechanoceptors (C-LTMRs). However, their role
remains ambiguous (167). Based on the observation that C-
LTMRs express the glutamate transporter VGLUT3 and
that mice constitutively lacking VGLUT3 are markedly
impaired in their ability to develop mechanical allodynia af-
ter nerve injury, C-LTMRs were suggested to play a role in
mechanical hypersensitivity (446). However, a subsequent
study using cell-type-specific mouse genetics demonstrated
that the loss of VGLUT3 expression in a specific population
of interneurons in the spinal cord, but not in any population
of peripheral sensory neurons (including C-LTMRs),
Merkel cells, or the brain, determines the loss of mechanical
allodynia (167, 381). Taf4, a protein derived from C-
LTMRs, has been reported to be required for mechanical
allodynia (91), which acts by modulating GABAergic trans-
mission and microglial activation in the spinal cord (249).
While this implicates C-LTMRs in mechanical hypersensi-
tivity, studies on silencing or ablation of C-LTMRswhich es-
tablish that their activation is essential for injury-induced
mechanical allodynia are still lacking.

Dissecting the precise contributions of individual types of
afferents and sensory neurons to various neuropathic pain
symptoms and signs is important not only from the stand-
point of academic interest in mechanisms, but also from the
point of view of developing and improving therapeutic strat-
egies (410). Analysis of specific mediators of sensitization of
these neuronal types can lead to illuminating knowledge on

druggable targets; the recent surge of efforts towards sin-
gle cell profiling on sensory neuron types is testimony to
this concept (503). Moreover, knowledge on significance
of different classes of sensory afferents can help improve
efficacy of pain therapies involving electrical modulation
of peripheral nerve activity, such as transcutaneous nerve
stimulation.

D. Contributions of Spinal Cord Circuits to
Neuropathic Pain

Our current knowledge on spinal circuitry and mechanisms
stems to a large extent from rodent experiments. Therefore,
species differences and divergence from human circuitry
cannot be excluded.

The laminar organization of the spinal cord based on pat-
terns and groups of cell bodies, first defined by Rexed, also
entails specific afferent connectivity. Thus inputs from noci-
ceptive and thermoreceptive afferents are predominantly
seen in the superficial dorsal horn laminae (I and II), while
inputs from mechanoreceptive and proprioceptive fibers
mostly synapse in deeper dorsal horn laminae (III-V). A
number of ascending tracts carry information processed in
the spinal dorsal horn to distinct brain structures, including
predominantly the spinothalamic tract conveying nocicep-
tive and non-nociceptive information to diverse cortices
over the thalamic relay and the spino-parabrachial and
spino-periaqueductal grey projections originating in lamina
1, which is believed to be pain-specific. This intricate com-
plexity of the spinal dorsal horn, with its diverse popula-
tions of projection neurons and interneurons, subserving
both excitatory and inhibitory functions, enables both a
delineation of nociceptive and non-nociceptive percepts
under physiological conditions as well as aberrations thereof
in pathological states.

Indeed, a major drive in the field of pain research has been
recently directed towards uncovering the cellular and molec-
ular identity of the elusive spinal circuits mediating allody-
nia. Both structural and functional changes have been
discussed (167). A popular notion, which originates back to
the Gate Control theory by Melzack and Wall (323), postu-
lates that non-nociceptive afferents can suppress the spinal
flow of noxious information to the brain by virtue of acti-
vating spinal inhibitory neurons, and that a loss of balance
between excitatory and inhibitory neurotransmission in the
spinal cord underlies allodynia. While there have been a
number of studies supporting this hypothesis over decades,
the precise identity of the underlying circuits was not
decoded. Recent breakthroughs in genetics, viral tracing,
and opto/chemogenetics are now helping to close this criti-
cal gap. Although a coherent picture is beginning to emerge,
there are still several inconsistencies across studies, and
open questions prevail (329, 380), including relevance to
the human context.
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1. Excitatory neuron populations

Using intersectional genetic approaches to ablate specific
populations of excitatory and inhibitory neurons in mice,
Ma and colleagues (119) identified a population of excita-
tory neurons expressing the marker peptide somatostatin
(SOM+) to be important for propagating information
regarding mechanical pain. They subsequently reported that
SOM+ neurons are largely sufficient and necessary to medi-
ate mechanical hypersensitivity in neuropathic pain (119).
Peirs et al. (381) implicated a distinct population of spinal
excitatory neurons in the deeper laminae of the dorsal
horn, which is marked by transient expression of VGLUT3,
in mechanical pain and mechanical allodynia. This popula-
tion receives Ab fiber input and further transmits it to lam-
ina I neurons as well as calretinin-expressing excitatory
neurons in lamina II (381). Recently, Petitjean et al. (387)
advanced this knowledge by showing that the calretinin
population of neurons feeds into the spino-parabrachial
pathway. There is also previous evidence for the involve-
ment of protein kinase C (PKC)-c-expressing spinal excita-
tory neurons in inner lamina II in pathological pain.
Interestingly, Piers et al. (381) suggested a divergence
between circuits mediating mechanical allodynia in inflam-
matory versus neuropathic conditions, suggesting that the
calretinin population and the PKC-c population selectively
contribute to mechanical hypersensitivity in inflammatory
and neuropathic conditions, respectively. However, other
recent studies have linked the PKC-c population of neurons
to inflammatory pain (3). Another recent study has
addressed the role of spinal neurons expressing a receptor
for neuropeptide Y (NPY-Y1R) using a chemical ablation
method, and reported that their loss selectively attenuated
neuropathic mechanical and cold allodynia without affect-
ing basal mechanical or thermal processing (348). Thus cur-
rent evidence points to involvement of at least five distinct
populations of excitatory neurons in neuropathic pain; how-
ever, it remains to be determined how these come together
to orchestrate the flow of nociceptive information in the spi-
nal cord-brain axis.

2. Inhibitory neuron populations

Similar efforts have been recently devoted to decoding the
identity of spinal inhibitory interneurons in “gating” of
nociceptive processing by Ab inputs. The spinal dorsal
horn harbors a rich diversity of inhibitory neurons, with
GABAergic interneurons being more prevalent in the
deeper dorsal horn laminae, while glycinergic neurons are
more abundant in the more superficial laminae. Both
GABAergic and glycinergic neurons are reported to
directly receive inputs from peripheral low-threshold Ab
mechanoceptors (119, 155). Along these lines, Duan et
al. (119) reported that SOM+ spinal excitatory neurons
are gated by a subpopulation of GABAergic inhibitory
interneurons expressing the marker peptide dynorphin;

these cells, in turn, receive input from Ab fibers and medi-
ate suppression of mechanical pain. Similarly, Petitjean et
al. (387) reported that activating GABAergic fast-spiking
interneurons expressing parvalbumin (PV neurons) selec-
tively rescued mechanical allodynia without altering ther-
mal sensitivity and their inhibition in naive mice induced
mechanical allodynia, suggesting the existence of modal-
ity-specific spinal circuits. Moreover, ablation of glyciner-
gic inhibitory neurons using genetic models has been
reported to broadly induce mechanical, heat, and cold
hypersensitivity as well as spontaneous pain-related
behavior in naive mice, and their chemogenetic activation
alleviated neuropathic allodynia (155).

3. Excitation-inhibition balance

Over several decades, converging lines of evidence have
established that the balance between excitation and inhi-
bition in spinal circuits is disrupted in neuropathic pain
(278). This was further corroborated by experiments
showing that transplantation of GABAergic precursor
cells to the spinal dorsal horn alleviates neuropathic me-
chanical allodynia (48). At least two mechanisms have
been proposed to account for reduction in spinal inhibi-
tion in neuropathic pain. One entails the hypothesis that
spinal GABAergic neurons undergo cell death upon nerve
injury. Although these findings have been contested and dis-
cussed critically, a recent study has reported involvement of
N-methyl-D-aspartate (NMDA) receptors in glutamate-
induced neurodegeneration using diverse anatomical and
functional assays (233). The second mechanism involves a
shift in anionic conductance in spinal lamina I neurons
resulting from reduced expression of the potassium-chloride
exporter KCC2, resulting thereby in reduced inhibition (74).
In support, recent evidence shows that restoring this
impaired chloride homeostasis pharmacologically by enha-
ncing KCC2 function alleviates neuropathic allodynia
(165).

It also deserves to be noted that spinal inhibitory interneur-
ons not only modulate the activity of their target cells post-
synaptically, but also have the ability to regulate spinal
circuits presynaptically on afferent terminal fibers. Although
spinal presynaptic inhibition has been studied to a much
lesser extent than postsynaptic mechanisms, there is already
evidence to suggest that it may play a key role in neuro-
pathic pain. One study has reported that in neuropathic
mice, presynaptic GABA conductance on primary afferent
terminals is reduced, accompanied by a brain-derived neuro-
trophic factor (BDNF)-dependent shift in the reverse poten-
tial of GABA, suggesting that presynaptic inhibition caused
by the depolarizing effects of GABA is attenuated after
nerve injury (63). The study went on to demonstrate that
selectively disrupting presynaptic GABAergic inhibition
led to allodynia in naive mice, showing that GABAergic
inhibition of presynaptic excitability, presumably neuro-
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transmitter release, represents an important defense mecha-
nism against neuropathic allodynia (63).

4. Impact of descending pathways

It has been long appreciated that pathways descending from
the midbrain and brain stem nuclei profoundly modulate
the processing of nociceptive information in the spinal cord.
The emerging view is that while descending noradrenergic
and serotonergic inhibition dominates over descending sero-
tonergic facilitatory pathways under physiological condi-
tions, this balance can switch during pain chronicity. It is
believed that spinal 5-HT2A receptors mediate facilitatory
actions of descending serotonergic axons via several mecha-
nisms, including unsilencing of silent synapses in the spinal
dorsal horn. Recent evidence indicates that spinal 5-HT2A

receptor activation leads to morphological plasticity of
PKC-c interneurons and reproduce their role in mechanical
allodynia following inflammation (3). Sensitization of
TRPV1 expressed presynaptically on central terminals of
primary afferents by descending serotonergic axons via 5-
HT3A receptor channels has also been reported (256).

Moreover, three new descending pathways have been
described which directly impact upon excitatory and inhibi-
tory cell populations in the spinal cord. First, a direct cor-
tico-spinal pathway originating in the anterior cingulate
cortex (ACC) was described to facilitate spinal excitatory
synaptic transmission and lead to nociceptive hypersensitiv-
ity. Optogenetically inhibiting this pathway exerted antino-
ciceptive effects and also reduced nerve injury-induced
spinal synaptic potentiation (65). Descending corticospinal
tract fibers originating in the somatosensory cortex project
not only to the spinal ventral horn but synapse also in the
spinal dorsal horn and gate tactile sensitivity (292).
Importantly, activation of this pathway was implicated in
mechanical allodynia in neuropathic mice (292). Finally,
GABAergic projections from the brain stem to a subset of
spinal GABAergic/enkephalinergic interneurons were
recently described to enhance spinal nociceptive transmis-
sion via disinhibition (156). It remains to be determined
whether their potential dysfunction in neuropathic pain
states contributes to hypersensitivity.

Taken together, these recent developments make it clear that
there is a large degree of dynamism in research on neural cir-
cuitry of neuropathic pain, and that recent findings have
rapidly advanced our understanding of specific circuits
mediating allodynia. Another dimension, which is being fer-
vently pursued in ongoing work, is to link this functional
specificity to the transcriptional repertoire of the cells
involved in single cell RNA sequencing. Finally, it must be
stressed that the field has moved away the neurocentric view
on circuits and has expanded it to study involvement of glia,
both in the peripheral and central arms of the pain pathway;
their contributions are discussed in section VIE.

E. MolecularMediators and Plasticity

A governing principle in the nervous system is given by its
plasticity, which is physiologically required in terms of
learning and adaptation to changed circumstances; however,
maladaptive plasticity can result in pathologies, with
chronic pain disorders constituting prominent examples. A
number of cell-cell interactions and molecular signaling
come into play in orchestrating sensitization of nociceptive
pathways.

Maladaptive changes can also come about at the structural
level. Indeed, diverse types of structural remodeling proc-
esses have been described. We refer readers to recent reviews
that have extensively discussed this topic (274, 275). A frus-
trating caveat of a majority of studies describing structural
changes in chronic pain is that they do not reveal whether
these changes constitute the cause or a consequence of neu-
ropathic pain. Therefore, more studies employing noninva-
sive longitudinal analyses of structure in conjunction with
functional and behavioral experiments in mouse models
over the time course of pain chronicity are warranted.

Major advances have been made in uncovering molecular
players of sensitization, both in the peripheral and spinal
avenues, while little is known about plasticity mechanisms
in the brain. Below, we will review the contributions of dis-
tinct cell groups and mediator classes in sensory-spinal
circuits.

1. Alterations in ion channels

The peripheral nociceptive endings are the first point of con-
tact between noxious stimuli and activation of the pain
pathways. For this interaction to occur, physical, chemical,
and mechanical stimuli need to be transduced to membrane
potential differences in axons and thereby to trigger action
potentials if a certain threshold is reached. Diverse ion chan-
nels of the TRP family as well as others, such as ASIC chan-
nels or ATP-gated purinergic channels (P2X), are involved
in transducing different types of noxious stimuli with a high
degree of specificity. At this point, diverse types of voltage-
gated sodium channels come into play to amplify transient
receptor potentials and thus reach depolarization levels suf-
ficient to trigger action potentials. Conversely, transient
potentials can be blocked by hyperpolarization induced by
diverse types of potassium channels. Voltage-gated calcium
channels at nerve endings govern neurotransmitter release
by virtue of facilitating SNARE (soluble N-ethylmaleimide-
sensitive factor attachment protein receptor) complex-medi-
ated vesicle fusion, a process which is particularly important
at the central terminals of primary afferents synapsing in the
spinal cord. Not surprisingly, all of these types of ion chan-
nels are under strong regulatory control via posttransla-
tional modifications and at the transcriptional level, which
can be deregulated upon nerve injury (FIGURE5).
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At least eight different members of the TRP channel family
[TRPV1, TRPV2, TRPV3, TRPV4, TRPM2, TRPM3,
TRPM8, and TRP ankyrin 1 (TRPA1)] are expressed in pe-
ripheral sensory neurons and implicated in diverse aspects
of nociceptive transduction and thermal encoding. Human
genetic studies have not revealed major links from neuro-
pathic pain syndromes to mutations in TRP channels, and
knockout mice did not show major deficits in neuropathic
pain. However, there is pharmacological evidence that
blockade of some TRP channels, particularly TRPV1 and
TRPA1, alleviates neuropathic hypersensitivity in rodent
models (26). It is likely that this arises from a central locus
of action, particularly on spinal terminals of nociceptors
(see above).

The voltage-gated sodium channels Nav1.1, Nav1.6,
Nav1.7, Nav1.8, and Nav1.9 are expressed in varying pat-
terns in peripheral sensory neurons and function as critical
regulators of excitability of sensory nerves. There has been
rapid progress in linking mutations in voltage-gated sodium

channels to multiple pain disorders, ranging from congenital
insensitivity to pain to paroxysmal pain disorders (30, 112).
As discussed in the clinical sections of this review, recent
studies also implicate them in human neuropathic pain dis-
orders. Thus genetic variations in Nav1.7 have been linked
recently to enhanced pain in painful diabetic neuropathies
(41). Similarly, mutations in Nav1.8, a tetrodotoxin (TTX)-
resistant channel which is expressed predominantly in pe-
ripheral nociceptive neurons, have been linked to painful
small fiber neuropathy, and a recent study analyzing the mu-
tant channels biophysically reported increased resurgent so-
dium currents as the mechanism underlying hypersensitivity
(538). A role for sodium channels in neuropathic pain is
supported by phenotypic analyses in studies on mouse
mutants, particularly Nav1.7, Nav1.8, and Nav1.9 as well as
by the fact that drugs used in some neuropathic disorders,
such as carbamazepine and lamotrigine, are sodium channel
blockers (30, 112). Importantly, a recent study reported that
genetic deletion of Nav1.6, a TTX-sensitive channel, in a
random population of (mostly large-diameter) sensory
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neurons in mice attenuated neuropathic mechanical allody-
nia partly, while their deletion in the Nav1.8 population of
nociceptive neurons was without any effect (64). There is
also evidence that diverse sodium channels, particularly
Nav1.8, accumulate at nodes of Ranvier and are overex-
pressed at neuromas, which are highly sensitive bulb-like
structures at the end of severed nerve fibers, in neuropathic
conditions. This observation was also recently extended to
Nav1.6 in the SNI model of neuropathic pain (64). This
overexpression of sodium channels has been associated with
a lowering of activation thresholds of nociceptors as well as
ectopic activity, thereby offering tremendous scope for ther-
apeutic interventions with new sodium channel blockers
that target specific sodium channels or even specific channel
activation states.

Hyperpolarization-activated and cyclic nucleotide-gated
(HCN) channels constitute another family of excitatory
channels that has been closely linked to neuropathic pain.
All four known HCN channels are expressed in peripheral
sensory neurons, and HCN1 and HCN2 are known to be
particularly important in generating a hyperpolarization-
activated inwardly-rectifying current (Ih) in sensory neu-
rons. The expression of HCN1 and HCN2 as well as Ih rise
significantly in sensory neurons, spinal cord, and some brain
regions in rodent neuropathic models (126); conversely,
their blockade by drugs such as ivabradine attenuates neuro-
pathic hypersensitivity in rodent models (540) and inhibited
spontaneous activity of C-nociceptors, but not Ab fibers, in
neuropathic rats (113). Specific deletion in HCN2 in
Nav1.8-expressing nociceptors completely abrogated neuro-
pathic mechanical and thermal allodynia in mice (126),
while Djouhri et al. (113) reported a selective effect of HCN
antagonists on cold, but not mechanical, allodynia. It should
be also noted that the therapeutic potential of HCN chan-
nels is not limited to their roles in peripheral neurons. There
are also exciting new insights emerging on the role of HCN
channels and Ih in brain circuits of pain. In mice with neuro-
pathic pain, HCN channel dysfunction was reported in den-
drites of neurons in the anterior cingulate cortex, resulting
in increased excitation (432).

Voltage-gated calcium channels profoundly shape cellular
excitability and neurotransmission at diverse avenues in the
somatosensory nociceptive pathways. Their biophysical
characteristics enable determining neuronal activation as
well as rhythmicity, which is why they have constituted
highly “druggable” targets in a variety of neural disorders,
including chronic pain. Gapapentin, ethosuximide, and
ziconotide are currently used in pain management, and sev-
eral additional drugs, including state-dependent calcium
channel blockers, are being investigated. Neurological and
cardiovascular side effects with these drugs remain highly
problematic, thereby rationalizing the need to understand
precise signaling mechanisms and develop more specific,
subtype-specific blockers.

Along these lines, there has been much excitement about the
calcium channel subtype Cav3.2 in recent years, which is
expressed in neurons of the DRG as well as the spinal cord.
Cav3.2 expression is increased in models of traumatic nerve
injury, such as SNI as well as chemotherapy-induced neu-
ropathy, accompanied by increases in T-type calcium chan-
nel current amplitude and density. Recently, paclitaxel-
induced neuropathic allodynia as well as spontaneous activ-
ity in sensory neurons was reported to be prevented, but not
reversed, by a Cav3.2 inhibitor, suggesting effects early dur-
ing the establishment of neuropathic pain (288). In the same
study, Cav3.2 interactions with Toll-like receptor 4 signaling
were suggested, which has been also implicated in nocicep-
tive sensitization. Similarly, attenuation of SNI-induced me-
chanical allodynia upon peripheral blockade of Cav3.2 by
the cardiovascular drug mibefradil was also demonstrated
(66). In the DRG, there are some discrepancies between
reports on expression and functions of Cav3.2 across differ-
ent fiber types. For example, using highly-specific genetic
tools with reporter mice, Franҫois et al. (157) reported that
the expression is specific to low-threshold mechanoceptors
(Ad-LTMRs and C-LTMRs), indicating selective actions
against tactile hypersensitivity involving these afferents. In
contrast, some other studies, e.g., Chen et al. (66), reported
not only broader expression, but also a functional increase
in response thresholds with channel blockers in high-thresh-
old C- and Ad nociceptors as well as in Ab LTMRs. This is
supported by studies showing that blockade of T-type cal-
cium channels in nociceptors reduces stimulated CGRP
release (468). These differences could also arise from less
specific actions of the drug rather than in Cav3.2 expression.
Interestingly, Cav3.2 expression was also recently reported
in lamina 1 as well as lamina 2 of the spinal dorsal horn,
with knockout mice showing modified intrinsic properties
and reduced excitability (57). Therefore, there is much
anticipation about development of novel classes of T-type
calcium channel blockers (465).

Cav a2 d1, a target of the analgesic drug gabapentin that is
frequently employed in neuropathic pain patients, albeit
with low estimated efficacy, continues to stay in research
focus. Fresh perspectives for mechanisms were opened when
it was found that Cav a2 d1 participates in synaptogenesis
upon interactions with thrombospondins, which are
blocked by gabapentin, in the context of epilepsy. Recent
studies show that this mechanism also holds true for the an-
algesic effects of gabapentin in the sensory-spinal system
(375). Both Cav a2 d1 and thrombospondin-4 are upregu-
lated in sensory neurons and the spinal dorsal horn in neuro-
pathic mice. Thrombospondin-4 was reported to elicit
development of new synapses in the spinal dorsal horn via
presynaptic interactions with Cav a2 d1, which is blocked by
gabapentin administrated at early stages, but not at chronic
stages, of neuropathic pain (542). This offers exciting new
avenues for development of more specific blockers of synap-
togenesis in preventing the establishment of chronic pain.
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Neuropathic pain-related alterations in ion channels are not
restricted to pronociceptive ion channels, but also extend to
several ion channels that diminish neuronal excitability.
Along these lines, there have been considerable new devel-
opments in our understanding of regulation of potassium
channel function in sensory-spinal circuits in neuropathic
pain. A large part of this regulation is related to epigenetic
mechanisms and is therefore discussed in the eponymous
section below. New insights have also emerged on the
involvement of shaker-like potassium channels, Kv1.1 and
Kv1.2, and their selective modulation of cold allodynia in
neuropathic models. It has been postulated that by virtue of
generating the excitability brake current IKD, Shaker-like
Kv1.1–1.2 channels counterbalance activity of TRPM8, a
cold sensor, in determining cold sensitivity. A recent study
has reported an increase in the proportion of cold-sensitive
neurons (CSNs) in DRGs contributing to the sciatic nerve,
and a decrease in their cold temperature threshold in the

context of nerve-injury evoked cold allodynia; this was
found to be associated with a decrease in IKD density rather
than an increase in TRPM8 currents (182).

GABA channels not only shape pre- and postsynaptic inhibi-
tion in central circuits as discussed in the section on spinal
circuits above, but have also been recently found to be regu-
lators of excitability of DRG somata. GABA receptor chan-
nels are surprisingly expressed in populations of DRG
neurons (118, 204), which are more classically associated
with glutamatergic transmission. A recent study demon-
strated that GABA infusion in the DRG repressed excitabil-
ity of sensory neuron somata and attenuated neuropathic
hypersensitivity, while application of antagonists exacer-
bated nociception-induced excitation (118). Intriguingly,
owing to the high chloride concentration in DRG neurons,
GABA-induced effects were actually depolarizing at the
level of individual somata, but the overall effect was
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inhibitory owing to a suppression of incoming nociceptive
activity at T-junctions, likely representing a depolarization
block (118). These results suggest that GABAergic channels
and certain classes of potassium channels offer hope for pe-
ripherally directed novel analgesics.

2. Role of immune cells in neuropathic pain

There is a large body of previous literature on the seminal
contributions of diverse types of immune cells, including
mast cells, neutrophils, macrophages, and T lymphocytes, in
peripheral as well as central sensitization (FIGURE 6). A
number of immune cell-derived factors have been described
and functionally validated, including prominently tumor ne-
crosis factor (TNF)-a, diverse interleukins, such as interleu-
kin (IL)-10, IL-1b, IL-4, and IL-17, and interferon-c, for
which we refer readers to previously published comprehen-
sive reviews (243, 329, 484, 490). Here, we will focus on
covering some of the newest findings that are highly relevant
to neuropathic pain. Initially thought to be mostly relevant
to inflammatory pain disorders, it is now clear that neuro-
pathic pain states are also associated with considerable infil-
tration of diverse types of immune cells in the vicinity of or
within peripheral nerves. A very important class in this
regard is given by T cells, which profoundly shape the devel-
opment of neuropathic pain. Mice lacking T cells entirely
lack the ability to develop neuropathic mechanical allodynia
after nerve injury (515). A genomic screen recently identified
Serpina3n to be a pivotal molecule determining resilience
against neuropathic pain in rats and mice and reported that
Serpina3n acts by blocking the pro-nociceptive effects of T
cell-derived leukocyte elastase in peripheral sensory neurons
(515). Genetic loss of leukocyte elastase as well as pharma-
cological inhibition were found to dampen allodynia and
spontaneous pain in diverse forms of neuropathic pain,
including nerve injury (21, 515), diabetic neuropathy (21),
cancer pain involving nerve remodeling (21), as well as
osteoarthritic pain (337).

Novel insights have also emerged on the involvement of nat-
ural killer cells in the development of painful neuropathy.
Following peripheral nerve injury, a ligand activating the
natural killer cell receptor is upregulated in DRG neurons
and mediates degeneration of injured neurons by invading
natural killer cells (84).

Among macrophages, it is now being increasingly appreci-
ated that different classes come into play in promoting sensi-
tization (classically, M1 type) and inhibiting sensitization
and promoting healing (M2 type). There is mounting evi-
dence for a role for macrophages in the pathophysiology of
neuropathic pain (88, 492, 541). Recently, macrophage acti-
vation has been closely linked to clinical observations of pe-
ripheral analgesic effects attributed to angiotensin receptor
2 antagonists, which were surprising given the lack of
expression of the receptor in sensory neurons. It is now

known that expression of angiotensin receptor 2 on invad-
ing macrophages at the site of nerve injury mediates attenua-
tion of neuropathic allodynia (453). Taken together, there is
enormous therapeutic potential in targeting immune cells
and their mediators in neuropathic pain, at least for its pe-
ripherally driven components.

3.Metabolites, hypoxia, andmitochondrial factors

A common element shared by human conditions and animal
models of diverse types of neuropathic pain is given by pro-
nounced mitochondrial dysfunction in peripheral sensory
neurons, induced by direct nerve injury or mitochondrial
toxicity induced by chemotherapeutics, anti-HIV treatment,
and high glucose and its metabolites in diabetic neuropathy
(32, 493). Mitochondrial dysfunction and generation of re-
active oxygen species (ROS) are tightly interlinked and lead
to energy deficits and degeneration. Peripheral sensory neu-
rons with their long axons and high energy demands are par-
ticularly vulnerable to bioenergetic crises induced by injury.
Mechanisms underlying mitochondrial toxicity and regula-
tion of ROS generation are now only beginning to be ana-
lyzed in neuropathic pain and open an exciting chapter with
new insights. Mitochondrial toxicity induced by cancer che-
motherapeutics was shown to be associated with high levels
of peroxynitrite, which has the ability to sensitize nerves
(235). Agents, which lead to peroxynitrite decomposition,
were shown to alleviate neuropathic allodynia in chemo-
therapy-induced neuropathy (235). Willemen et al. (530)
reported the expression of FAM173B, a novel enzyme with
mitochondrial lysine methyltransferase activity in sensory
neurons, and demonstrated that the enzyme hyperpolarized
mitochondria and led to ROS production, thereby facilitat-
ing the activation of macrophages in peripheral nerves in
models of neuropathic pain. Taken together, these data sug-
gest the clinical benefits for lowering or preventing ROS
production in neuropathic conditions. This can be achieved
by stabilizing the hypoxia-inducible factor 1 (HIF1a), which
is a key transcription factor activated by hypoxia, hypergly-
cemia, nitric oxide, as well as ROS. Rojas et al. (418) dem-
onstrated that HIF1a is as an upstream suppressor of ROS
production in peripheral sensory neurons and thereby limits
nerve damage and promotes nerve integrity in a model of
type 1 diabetic neuropathy.

Recent studies also suggest that the harmful effects of mi-
tochondrial toxicity and ROS are not restricted to periph-
eral nerves in neuropathic pain. Upon peripheral nerve
injury, mitochondrial superoxide levels increase in the
spinal dorsal horn in a superoxide dismutase-2-dependent
manner and lead to an increase in the frequency of minia-
ture excitatory postsynaptic currents in excitatory neu-
rons of the spinal cord (19). Thus overexpressing the
superoxide dismutase-2 enzyme led to protection against
neuropathic allodynia induced by nerve injury. Another
mechanistic link comprises the role of ryanodine
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receptors (RyR), which were shown to mediate increased
mitochondrial superoxide expression in spinal cord neu-
rons, but not glia, in mice with HIV neuropathy (178).
Accordingly, inhibition of RyR was reported to lower
neuropathic allodynia.

4. Glial-derived mediators in peripheral nerves and
spinal cord in neuropathic pain

Over the past decade, both peripheral and central glia
have taken center stage in research on neuropathic pain.
Glial contributions to neuropathic pain have been the
topic of a series of excellent reviews (e.g., Refs. 243,
430). We will therefore restrict the following discussion

to the most recent work on microglia, astrocytes, and pe-
ripheral glial cells.

Recent studies have helped resolve orchestration between
different types of glia in neuropathic pain. Pathological ac-
tivity in peripheral afferents following injury was recently
reported to lead to release of colony stimulating factor 1
(CSF1) from central terminals of injured afferents, triggering
microglial activation via activation of CSF1 on their surface
(196). Previously, ATP has also been implicated in this pro-
cess. Proliferation, shape change, and activation of micro-
glial populations in the spinal dorsal horn have been
reported in several models of neuropathic pain, and micro-
glial activity has been postulated to underlie sex differences
in mechanisms of neuropathic mechanical allodynia (243).
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Diverse ensuing changes in the transcriptional and secretory
profile of microglia have been linked to neuropathic pain,
including release of TNF, diverse interleukins, fractalkine,
ATP, chemokines, among others. It is thought that this neu-
roinflammatory cascade is further propagated by recruit-
ment of other microglia and eventually neighboring
astrocytes, which also release pro-inflammatory agents.
Moreover, astrocyte activation further promotes neuronal
activity, e.g., via enhanced secretion of D-serine, which
potentiates NMDA receptor function on spinal neurons,
thereby promoting central sensitization (243, 329).
Importantly, astroglial activation can also impact on the
bioenergetic state of neurons in the spinal dorsal horn, trig-
gering further dissemination of aberrant activity along spi-
nal circuits. Owing to lack of their specificity, it has not been
possible to derive strong inferences from microglial and
astrocytic inhibitors in alleviating neuropathic pain.
Thereby, translation of the vast literature from rodent stud-
ies on to human disorders has been conspicuously lacking.

Secretion of BDNF by activated microglia has also been linked
to alterations in KCC2-mediated chloride gradients in spinal
neurons in several studies (430), which is discussed as a mech-
anism of spinal disinhibition in neuropathic pain (see sect.
VID). Because BDNF is not found in the transcriptome of
microglia (94), either in resting or activated state, the source
of BDNF requires further verification. BDNF is known to be
secreted from central terminals of primary afferents, and
recent studies with conditional knockout mice suggest a piv-
otal role for BDNF derived from sensory neurons (107, 456).

Microglia are also important mediators of activity-depend-
ent synaptic pruning during development and disease (430).
It remains to be determined whether glia-mediated pruning
contributes to neuropathic pain. Interestingly, in chronic
inflammatory pain, the downregulation of C1q-dependent
complement signaling in spinal neurons, not glia, leads to
increase in synaptic density; however, this mechanism was
found to not be operational in neuropathic pain (459).

Peripheral glia have been studied to a lesser extent than spinal
glia and could contribute to delayed and prolonged structural
and functional changes following nerve injury. The recent
years have brought a number of new insights into the func-
tions of satellite glia, which form ringlike envelopes around
DRG neuronal somata. Indeed, communication between sat-
ellite glia and sensory neurons has been an area of emerging
importance in pain research (FIGURE 7). Like astrocytes in
the central nervous system, satellite glia form gap junctions
and show dye coupling, which is strikingly increased upon
application of a peripheral noxious stimulus. Gap junction
coupling is mediated by electrical synapses comprising con-
nexin family proteins, which are expressed in satellite glia
cells, but not in sensory neurons. A recent study performed
dual patch-clamp recordings on DRGs and observed coupling
between satellite glia with themselves and with neurons as

well as between sensory neurons (469), suggesting that satel-
lite glia form an essential bridge synchronizing the activity of
sensory neurons. Recent studies also suggest a role of damage
to Schwann cells for neuropathy and neuropathic pain (87,
88, 181). Schwannopathy has been coupled to myelin disrup-
tion, changes in axonal conduction, impaired regeneration,
and neuroinflammation (87, 88, 181).

This leads to the question of what brings about satellite glia
activation. Recent studies suggest that the signals may origi-
nate from sensory neurons themselves. It is well-known that
the nitric oxide (NO)-cGMP-protein kinase G1 pathway in
primary sensory neurons plays a key role in both peripheral
sensitization and spinal long-term potentiation (301).
Recently, NO generated in sensory neurons was proposed to
activate cGMP signaling in satellite glia, thereby augment-
ing gap junction coupling (27) (FIGURE 7). Conversely, acti-
vation of ATP-mediated purinergic signaling via P2Y12
receptors in satellite glia was recently implicated in neuronal
sensitization in a model of HIV neuropathy (539).

Downregulation of potassium channel Kir4.1 in satellite
glial cells has been recently reported in post-herpetic neural-
gia-induced mechanical allodynia and is thought to be trig-
gered by TNF-a released by invading neutrophils and
macrophages (457). This suggests that satellite glia form an
accessory unit or even an intermediate to neuroimmune
interactions in neuropathic pain. This concept was also sup-
ported by a recent study showing that knocking down the
IKK/NF-κB-dependent proinflammatory pathway selec-
tively in satellite glia cells in mice led to a reduction in infil-
tration of macrophages, suggesting that satellite glia act
both downstream and upstream of macrophages (291).
Importantly, this change also impeded CSF1 production in
sensory neurons and the ensuing microglia activation in the
spinal cord (291). Thus satellite glial activation is linked to
microglial activation via sensory neuron stimulation.

Taken together, these results suggest diverse reciprocal inter-
actions between sensory neurons and satellite glial cells,
which form a unit connecting peripheral immune cell activa-
tion to central immune cell activation and spinal sensitiza-
tion in neuropathic pain.

5. Epigenetic regulation in neuropathic pain models

Epigenetic regulation is the cornerstone of mechanisms
underlying gene-environment interactions and has been pro-
posed to largely account for selective susceptibilities versus
resilience towards developing chronic pain (94, 95).
Chromatin remodeling and ensuing alterations in gene
expression are regulated via enzymes mediating methylation
of DNA (Dnmts) or deacetylation of histones (HDACs).
Recently, several studies have described deregulation of
diverse Dnmts and HDACs along the somatosensory noci-
ceptive pathway as well as their functional actions in
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neuropathic pain models (95). For example, both Dnmt1
and Dnmt3 were found to regulate expression of the potas-
sium channel Kcna2 in peripheral neurons following nerve
injury, thereby contributing to hyperexcitability (473).
However, additional studies are needed to establish specific-
ity before these enzymes can be therapeutically targeted
given their broad expression and functions across the body.

Another form of epigenetic regulation is given by noncoding
RNAs (ncRNAs). These exert tremendous posttranscrip-
tional and translation control in physiology and disease
states (20). They have the ability to modulate neuronal
excitability at diverse avenues in the somatosensory nocicep-
tive pathway and neuroimmune interactions (272). After
nerve injury, hundreds of miRNAs can be up- or downregu-
lated in sensory neurons. Using a model of neuropathic rats
with differential susceptibility to developing neuropathic
pain-like behavior, Bali et al. (20) found differential regula-
tion of only three miRNAs, namely, miR-30d-5p, miR-
125b-5p, and miR-379-5p, which are known to regulate
expression of key mediators in neuropathic pain, such as
TNF-a, the transcription factor Stat-3, and BDNF. Simeoli
et al. (458) studied the role of miRNA21-5p, which was
known to be upregulated upon nerve injury, and observed
that it is released from DRG neurons upon nociceptive acti-
vation and acts to recruit macrophages. In keeping with the
important role allocated to immune cells in neuropathic allo-
dynia, suppressing miRNA21 expression alleviated hyper-
sensitivity in mice with nerve injury (458). Although most of
the initial analyses were focused on microRNA species
(miRNAs), including the let-7 family of miRNAs, recent
studies on other forms of ncRNAs, such as long noncoding
RNAs (lncRNAs) are now emerging (20). An important
recent development in this direction was the discovery of a
lncRNA targeting the potassium channel Kcna2 in sensory
neurons (550). Upregulation of this lncRNA following nerve
injury was shown to repress Kcna2 expression and thereby
contribute to neuropathic hypersensitivity (550). Baskozos
et al. (25) comprehensively tested expression of lncRNAs in
sensory neurons from murine DRGs and human induced
pluripotent stem cell (iPSC)-derived cultures and observed
strain- and gender-dependent alterations in their expression
induced by nerve injury.

VII. GENETICS OF NEUROPATHIC PAIN

As discussed above, rare monogenic pain disorders caused
by mutations in the sodium voltage-gated channel alpha
subunit 9 (SCN9A) causing gain-of-function mutations in
Nav1.7 include inherited erythromelalgia and paroxysmal
extreme pain disorder (30, 111, 112). Also, gain-of-function
mutations in Nav1.9 and other sodium channels have been
linked to pain disorders (30, 112). Mutations in sodium
channels have also been associated with common neuro-
pathic pain conditions. De novo gain-of-function missense
variants in Nav1.7 were found in 30% and in Nav1.8 in 9%

of patients with idiopathic painful small-fiber neuropathy
(128, 129), and mutations in Nav1.7 and 1.8 have also been
found in up to 10% of patients with painful diabetic poly-
neuropathy (41, 203). The role of Nav1.8 in neuropathic
pain is supported by rodent studies showing that the channel
is essential for the expression of spontaneous activity in
damaged sensory axons (427). In a recent study of 1,139
patients with small fiber neuropathy, 12% had 73 different
potentially pathogenic variants in voltage-gated sodium
channels, of which 50 were found in more than 1 patient.
This study found that erythromelalgia-like symptoms and
warmth-induced pain were more common in patients with
these variants (124). In a study in patients with idiopathic or
diabetic peripheral neuropathy, missense variants were com-
mon in SCN9A, SCN10A, and SCN11A but not more com-
mon in painful than pain-free neuropathy, and the authors
suggested that other factors than the presence of these var-
iants are important for the development of neuropathic pain
(520). Gain-of-function mutations in TRPA1 are another
example of a monogenic pain disorder as it is shown to
cause familial episodic pain syndrome (271). Rare genetic
variants in the genes coding for TRPA1 and TRPV1 have
also been found in patients with erythromelalgia (548).

Genetic epidemiology genome-wide association studies in
neuropathic pain have included relatively few patients (53,
350, 510). A recent systematic review of 29 studies identified
variants in 28 genes involved in neurotransmission, receptor
signaling and binding, immune response, iron metabolism
and binding, and drug metabolism that showed study-wide
association with neuropathic pain (510). Genetic variants in
catechol-O-methyltransferase (COMT), major histocompati-
bility complex genes, opioid receptor mu 1 (OPRM1),
GCH1, IL-6, and TNF-a were identified to have an associa-
tion with neuropathic pain in more than one study. In gen-
eral, more and larger studies are needed to replicate these
findings. The heterogeneity of underlying causes and profiles
of neuropathic pain may preclude finding polymorphisms
related to a specific cause or profile in large population-based
studies. A few studies have also examined the relation
between genetic variants and specific somatosensory profiles.
In one study, single nucleotide polymorphisms in TRPA1,
TRPM8, and TRPV1 did not differ between 371 patients
with neuropathic pain and 253 healthy controls, suggesting
that these variants are unlikely to play a role as susceptibility
factors of chronic neuropathic pain (39). However, subgroup
analyses suggested that specific single nucleotide polymor-
phism were associated with specific sensory profiles support-
ing a role of TRP channel polymorphisms in the somato-
sensory function in patients with neuropathic pain.

VIII. PHARMACOLOGY OF NEUROPATHIC
PAIN

Based on a systematic review and meta-analysis of published
and unpublished randomized controlled double-blind trials,
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the Neuropathic Pain Special Interest group (NeuPSIG) of
the International Association for the Study of Pain (IASP)
has published recommendations for the pharmacological
treatment of neuropathic pain (137). Drugs with a moder-
ate-to-high quality of evidence and strong recommendation
were tricyclic antidepressants (TCA), gabapentin, pregaba-
lin, and serotonin noradrenaline reuptake inhibitors (SNRI:
duloxetine and venlafaxine), and these are recommended as
first-line drugs. Drugs with a weak recommendation
included capsaicin 8% patches, lidocaine patches, and sub-
cutaneous injections of botulinum toxin type A for periph-
eral neuropathic pain only (137). There is also some
evidence for the effect of tramadol and opioids, but these
drugs are generally not recommended for chronic non-can-
cer pain (12, 136). There were inconclusive evidence for so-
dium channel blockers like carbamazepine, lacosamide, and
lamotrigine, but these drugs are suggested to be effective in
subgroups of patients with neuropathic pain (85, 93), and
carbamazepine and oxcarbazepine are recommended first-
line treatments for trigeminal neuralgia (80, 544). Despite
the evidence for efficacy of drugs with different mechanisms,
the effect sizes are small and treatments are often associated
with side effects, andmany patients will not obtain sufficient
pain relief in tolerated doses (137). When treatment with
one drug is partially but not sufficiently effective, combina-
tion therapy is often used. In refractory cases, spinal drug
administration or neuromodulation may be considered,
although there is little evidence from randomized controlled
trials (77, 136).

TCAs and SNRIs inhibit the presynaptic reuptake of sero-
tonin and noradrenaline, and their analgesic activities are
thought to be through activation of descending aminergic
pathways at spinal or supraspinal sites, although peripheral
mechanisms are also suggested to be involved (270, 462).
The Cav a2 d antagonists gabapentin and pregabalin were
designed as GABA analogs but do not have clinically rele-
vant agonist-like effects (377). The analgesic actions are
thought to involve inhibition of voltage-gated calcium chan-
nels and reduced activity-dependent calcium signaling and
thereby inhibition of excitatory transmitter release and
reduced neuronal hyperexcitability (377). Other actions
such as an effect on glia cells and expression of proinflam-
matory cytokines may also be involved (270). The drugs
may act at peripheral, spinal, and supraspinal levels (214,
270, 335). Lidocaine-medicated patches are used for PHN
and peripheral neuropathic pain. Lidocaine acts by a use-de-
pendent blockade of voltage-gated sodium channels and
thereby a stabilization of nerve membranes and inhibition
of ectopic discharges (106). Capsaicin, the active pungent
ingredient in chili peppers, binds to TRPV1. Repeated appli-
cation or a single application of a high concentration causes
a reversible in intraepidermal nerve fiber density and desen-
sitization of nociceptors (6, 393). Capsaicin 8% patches are
applied for 30–60 min, and the treatment is repeated every 3
mo. Botulinum toxin type A can be given subcutaneously or

intradermally in the area of peripheral neuropathic pain ev-
ery 3 mo. The exact analgesic mechanisms are not known
but suggested to involve reduced inflammation, inhibition
of neuropeptide and neurotransmitter release from primary
afferents, reduced sodium and TRPV1 channel activity, or
central effects via retrograde axonal transport (328).

Merck’s manual from 1901 provided detailed treatment rec-
ommendations for neuralgia based on underlying cause,
e.g., anemic, sciatic, malarial, or from cold. Combination
treatment was recommended including three or four oral
and topical agents for each treatment. These included mer-
cury ointment and arsenous acid, treatments later aban-
doned because of serious long-term side effects, but also
treatments with are used today and have a proven effect on
neuropathic pain such as morphine and tincture of capsi-
cum, and treatments that are used despite no proven effect
from randomized controlled trials such as menthol, nutmeg,
and extract of Cannabis indica. Interestingly, antifebrin,
which is an aniline derivative like paracetamol and with me-
dicinal qualities similar to those of antipyrine, and oil
Wintergreen, which contains methyl salicylate, the primary
metabolite in salicylic acid, were also recommended drugs,
but today we have no randomized controlled trials that have
estimated the efficacy of paracetamol and nonsteroidal anti-
inflammatory drugs for neuropathic pain (137, 334, 516,
529). Surprisingly few new treatments have been introduced
and proven effective and safe for neuropathic pain over the
past 120 yr, and they have not been developed through bot-
tom-up translational approaches but rather through empiri-
cal clinical observations (12, 136). Furthermore, they
probably act by a general pain modulating and neuronal de-
pressant activity rather than targeting specific underlying
mechanisms (206). The few drugs acting on new targets that
have be developed though bottom-up translational
approaches, such as neuronal nicotinic receptor agonists
(424), angiotensin type II receptor antagonists (409), the
substance P receptor NK1 antagonists (180), and chemokine
receptor 2 antagonists (248) have either failed in clinical tri-
als or been abandoned because of intolerability. Mutations
in SCN9A causing loss-of-function in Nav1.7 cause congeni-
tal insensitivity to pain, and recently there has been an inter-
est in developing Nav1.7 blockers as analgesics (321).
Results of randomized controlled trials have been disap-
pointing, with no effect on the primary outcomes (398,
545), but a recent study using human iPSC-derived nocicep-
tors has shown that some Nav1.7 blockers lack specificity
(321).

The unmet need for effective treatments and the limited suc-
cess from the classic translational approach have led to
attempts to refine older drugs and an inverse translational
approach where results from clinical experience are trans-
lated to animal models to investigate mechanisms (12). One
is tincture of aconite, another recommended treatment from
Merck’s manual, which is used today in traditional medicine
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to treat pain and numbness. Promising results from open
label studies of goshajinkigan, which has a main ingredient
of aconite (269, 478), are being back translated into preclin-
ical studies aimed at identifying active ingredients of proc-
essed aconite root (474, 478).

IX. MECHANISM-BASED CLASSIFICATION

Neuropathic pain is generally classified according to under-
lying etiology (FIGURE 4), but it is recognized that mecha-
nisms and pain phenotypes differ within each diagnosis and
at the same time may be shared across diagnoses. Dr.
Mitchell Max noted in a commentary in Pain in 1990 that
“Despite the diversity of the pathology, physiology, and
symptoms of neuropathic pain syndromes, there is virtually
no information guiding the clinician in matching a particu-
lar treatment to a particular patient” (318). As he also
noted, development of an individualized treatment algo-
rithm requires the development of drugs that correct partic-
ular pathophysiological mechanisms, identification of a
classification based on underlying physiology, and stratified
clinical trials. Despite an increasing focus on mechanism-
based classification and individualized treatments for neuro-
pathic pain over the past two decades (16, 487, 519, 532),
these three requirements are still challenging. A predictive
biomarker assesses baseline characteristics that categorize
patients by their likelihood of response to a particular treat-
ment (464). Unlike the oncology field, where molecular
profiling and precision medicine are advanced (273), we do
not have good biological knowledge of the mode-of-action
of the drugs currently used for neuropathic pain or of the
mechanisms underlying a specific pain phenotype. It is there-
fore recommended that precision medicine in the pain field
involves a two-step approach (464). The first exploratory
step involves assessment of biomarkers at baseline in clinical
trials and performing secondary analyses of treatment
effects to identify likely responders. This is challenging
because studies are often underpowered for such secondary
analyses, and up to now, there has been reporting bias with
positive predictors more likely to be mentioned in the publi-
cations. With the requirement for study registration and
open access to predefined primary and secondary outcomes
frommost journals, reporting bias should become a decreas-
ing concern. The next confirmatory step involves clinical tri-
als, where patients are prospectively enrolled on the basis of
biomarkers. This step is also challenging as it requires large
sample sizes and the interpretation is often complicated
because of a complex interaction of treatment and placebo
responses and difficulty in separating predictive from prog-
nostic biomarkers (171, 447).

In a classic paper from 1998, patients with PHNwere classi-
fied into three groups based on clusters of symptoms and
signs (135). One group, termed irritable nociceptor, had pre-
served cutaneous innervation and marked dynamic mechan-
ical allodynia (425, 426), one group had thermal sensory

deficits with mechanical allodynia and hyperalgesia, and the
last group was characterized with deafferentation and gen-
eral sensory loss. The authors speculated that these pheno-
types represent different underlying pain mechanisms that
may be weighted differently in the groups. A later large mul-
tinational study in 902 patients with different neuropathic
pain conditions using the German Research Network on
Neuropathic Pain (DFNS) protocol for standardized
detailed quantitative sensory testing of 13 different parame-
ters of thermal and mechanical sensory loss or gain (419)
found three groups with similar distinct sensory profiles in a
hypothesis-free cluster analysis (23). One cluster was char-
acterized by sensory loss of small and larger fiber functions
and the presence of paradoxical heat sensation, which is the
sensation of warm with decreasing temperatures to cold and
is a marker of cold and warm sensory loss (436, 513). A sec-
ond cluster termed thermal hyperalgesia was characterized
by relatively preserved large and small fiber sensory func-
tions in combination with heat and cold allodynia and only
low-intensity dynamic mechanical allodynia, and the third
cluster termed mechanical hyperalgesia had predominantly
loss of thermal sensation in combination with blunt pressure
allodynia, pinprick hyperalgesia, and marked and more fre-
quent dynamic mechanical allodynia (23). These sensory
phenotypes were compared with human pain models in
healthy subjects in another study (518). The sensory profile
after nerve block with either compression or topical lido-
caine resembled the sensory loss phenotype, the profile in
the primary area after sensitizing the skin with UVB or topi-
cal capsaicin resembled the thermal hyperalgesia phenotype,
and finally the profile in the secondary hyperalgesia area af-
ter intradermal capsaicin and electrical high-frequency stim-
ulation resembled the mechanical hyperalgesia phenotype
(518). The authors speculated that the clusters represent dif-
ferent underlying mechanisms with deafferentation hyper-
sensitivity underlying pain in the sensory loss phenotype,
irritable nociceptors and peripheral sensitization underlying
pain in the thermal hyperalgesia phenotype, and reorganiza-
tion and central sensitization underlying the mechanical
hyperalgesia phenotype. Similar sensory profiles are, how-
ever, found in patients without pain, and it has also been
suggested that they are correlates of neuropathy rather than
reflecting neuropathic pain mechanisms (220, 438). In line
with this thinking, the sensory phenotypes seen in patients
with neuropathic pain may rather reflect the loss or preser-
vation of primary afferents and their central projection
pathways with the absence of, e.g., dynamic mechanical
allodynia being a natural consequence of loss of Ab fibers.

Patient-reported outcomes with the assessment of symptoms
is another approach to identify clusters of patients with
potential different mechanisms (16, 24, 161). Different
questionnaires have been developed to characterize pain
characteristics, such as the Neuropathic Pain Symptom
Inventory (45) and the painDETECT (162), and different
subgroups have been identified in patients with neuropathic
pain (16, 24, 161). Other biomarkers possibly predictive of
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a specific mechanism or treatment response include psycho-
logical assessment, molecular profiling, assessment of condi-
tioned pain modulation as an indirect possible measure of
the function of pain modulating pathways, and electrophysi-
ology or functional imaging (464, 487).

There is some evidence from clinical trials that patient
profiling might be informative for deciding on certain treat-
ments. The effect of subcutaneous injections of botulinum
toxin type A have in two studies been shown to be associ-
ated with preserved thermal sensation based on quantitative
sensory testing and intra-epidermal nerve fiber density and
more allodynia assessed both with sensory testing and using
questionnaires suggesting that preservation of small-fiber
innervation and evoked pain are predictors of response (15,
402). Studies on predictors for other topical agents are,
however, conflicting, with small studies suggesting both a
better effect of topical lidocaine in patients with degenerated
nociceptors (523) and preserved nociceptors (92) and
uncontrolled studies showing mixed results for topical cap-
saicin (198, 308). Different studies have in post hoc analyses
found evoked pain to be a predictor for the response to in-
travenous lidocaine (18) and lamotrigine (146), both of
which are sodium channel blockers, but other studies have
failed to reproduce these findings (17, 138, 183, 187). In
one of the few studies performed with the “a priori” aim to
test the use of stratification for predicting treatment
response, the sodium channel blocker oxcarbazepine was
more effective in peripheral neuropathic pain in patients
with the irritable nociceptor phenotype compared with
those without this phenotype (93). Irritable nociceptor phe-
notype was defined using the DFNS quantitative sensory
testing protocol and required normal cold and warm detec-
tion thresholds and evoked pain with either dynamic me-
chanical allodynia, reduced cold, heat, pressure, or
mechanical pain threshold or increased mechanical pain
sensitivity (93) (FIGURE8).

X. CONCLUSIONS

Neuropathic pain is a complex condition caused by a nerv-
ous system lesion or disease. It remains difficult to treat and
represents a huge unmet medical need. Neuropathic pain
has different manifestations, such as ongoing burning or
pricking pain, paroxysmal pain, or cold or touch-evoked
allodynia. The pathophysiology similarly varies and
involves ectopic activity in damaged or adjacent nerves,
DRG or central pathways, and peripheral and central sensi-
tization and a range of molecular mechanisms. Underlying
circuits are just beginning to be unraveled and yield critical
new knowledge which can be harnessed for new pharmaco-
logical and neurostimulation-based therapeutic strategies.

Our understanding of the underlying pathophysiology has
increased considerably in the last decades, although not to

the extent that treatment has improved considerably.
Considering the substantial morbidity of chronic neuro-
pathic pain, it is imperative that we understand the obstacles
for successful development of targeted therapies, and the
challenges in the translation between animal and human
studies need further attention. Improved patient stratifica-
tion and clinical trial design, advanced genetic sequencing
technology, whole-genome association studies, use of
human tissue and iPSCs-derived cultures, validation of etho-
logically relevant behavioral assessments of pain in animals,
further use of new molecular techniques, such as single cell
sequencing, as well as circuit dissection tools, will hopefully
pave the way for better understanding of pathophysiology
and eventually prevention and treatment.
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FIGURE8. Sensory profiles of two patients with the irritable and the
non-irritable nociceptor phenotypes based on quantitative sensory
testing. The requirement for the irritable nociceptor phenotype is nor-
mal thermal cold and warm detection thresholds and sensory gain
with reduced pain threshold to cold, warm, pressure, or pinprick stim-
uli of dynamic mechanical allodynia (not shown). If one of these two
requirements is not fulfilled, the phenotype is classified as the non-irri-
table nociceptor phenotype. QST, quantitative sensory testing; CDT,
cold detection threshold; WDT, warm detection threshold; TSL, ther-
mal sensory limen; CPT, cold pain threshold; HPT, heat pain thresh-
old; PPT, pain pressure threshold; MPT, mechanical pain threshold;
MPS,mechanical pain sensitivity;WUR, wind-up ratio; MDT, mechan-
ical detection threshold; VDT, vibration detection threshold.
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